Bài 7: Tỉ lệ thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyển Thủy Tiên

Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:

a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)

Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:

a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)

Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Vũ Minh Tuấn
9 tháng 11 2019 lúc 20:53

Bài 1:

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow\frac{b^2}{a^2}=\frac{d^2}{c^2}.\)

\(\Rightarrow\frac{b^2}{a^2}+1=\frac{d^2}{c^2}+1\)

\(\Rightarrow\frac{b^2}{a^2}+\frac{a^2}{a^2}=\frac{d^2}{c^2}+\frac{c^2}{c^2}.\)

\(\Rightarrow\frac{b^2+a^2}{a^2}=\frac{d^2+c^2}{c^2}\)

\(\Rightarrow\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

Akai Haruma
9 tháng 11 2019 lúc 23:46

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

Khách vãng lai đã xóa
Akai Haruma
9 tháng 11 2019 lúc 23:50

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

Khách vãng lai đã xóa
Akai Haruma
9 tháng 11 2019 lúc 23:53

Bài 4:
Từ điều kiện $b^2=ac; c^2=bd\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}$

Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$

$\Rightarrow a=bt; b=ct; c=dt$. Khi đó:

$\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{(bt)^3+(ct)^3+(dt)^3}{b^3+c^3+d^3}=\frac{t^3(b^3+c^3+d^3)}{b^3+c^3+d^3}=t^3(1)$

Và:

$\frac{a}{d}=\frac{bt}{d}=\frac{ct.t}{d}=\frac{dt.t.t}{d}=t^3(2)$

Từ $(1);(2)$ ta có đpcm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
Nguyễn Kim Chi
Xem chi tiết
Nguyễn Trần Đức Huy
Xem chi tiết
renyy_chan
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Vũ Thu Hà
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Nhi
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết