Ôn tập chương Hình trụ, Hình nón, Hình cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Châu Trần

Bài 1: Cho a,b,c là các số thực dương.Tìm GTNN của biểu thức :

\(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}+\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{b+a}{c}\)

Bài 2: Cho các số thực x,y thỏa mãn \(0\le x\le3\)và x+y=11. Tìm GTLN của P=xy

(chứng minh BĐT dựa vào BĐT Cauchy)

Mỹ Duyên
27 tháng 7 2017 lúc 10:21

Câu 1:

Ta có: Áp dụng BĐT phụ \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)

=> \(2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\)

=> \(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge4,5\) (*)

và BĐT Cau -chy ta có:

\(P+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\)

\(+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

<=> \(P+3\ge\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)

\(+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{\dfrac{b}{c}.\dfrac{c}{a}}+2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}\)

<=> \(P+3\ge4,5+6=10,5\) ( Theo (*)) => \(P\ge7,5\)

=> Dấu = xảy ra <=> a = b = c

Feed Là Quyền Công Dân
27 tháng 7 2017 lúc 11:08

từ $x\le 3$ suy ra $x=3$ là điểm rơi

suy ra $y=8$ suy ra $P_{max}= 3*8=24$


Các câu hỏi tương tự
Ngô Hoài Thanh
Xem chi tiết
Trương Nguyệt Băng Băng
Xem chi tiết
Dương Phất Kim
Xem chi tiết
Phạm Thu Thủy
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
Nghiêm Phương Linh
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Nguyễn Anh Minh
Xem chi tiết