Câu 1
a) Tính \(2\sqrt{6}-\sqrt{49}\)
b) CMR \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}=\dfrac{6}{7}\)
c) Rút gọn biểu thức \(B=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)với...a\ge0;a\ne1\)
Câu 2Cho phương trình \(x^2-2\left(m-3\right)x-1=0\)
Tìm m để phương trình có nghiệm \(x_1;x_2\)mà biểu thức \(A=x^2_1-x_1x_2+x^2_2\)đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Câu 2:
\(x^2-2\left(m-3\right)x-1=0\)
a=1; b=-2m+6; c=-1
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-6\right)^2-3\cdot\left(-1\right)\)
\(=4m^2-24m+36+3\)
\(=\left(2m-6\right)^2+3\ge3\)
Dấu '=' xảy ra khi m=3