a, \(f\left(x\right)=\sqrt{x}\left(1-\sqrt{x}\right)=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
khi x=1/4
b,\(g\left(x\right)=\dfrac{1}{x^2-2\sqrt{2}x+5}=\dfrac{1}{\left(x-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
khi x=căn 2
c,\(x-4\sqrt{x-3}=x-3-4\sqrt{x-3}+4-1\)
\(=\left(\sqrt{x-3}-2\right)^2-1\ge-1\)
dấu = khi x=7
d, g(x)=\(x-2\sqrt{xy}+3y-2\sqrt{x}+\dfrac{4009}{2}\)
3g(x)=\(x-6\sqrt{xy}+9y+2x-6\sqrt{x}+\dfrac{9}{2}+6009\)
3g(x)=\(\left(\sqrt{x}-3\sqrt{y}\right)^2+2\left(\sqrt{x}-\dfrac{3}{2}\right)^2+6009\)
3g(x)>= 6009
g(x)>=2003
khi x=9y=9/4