\(a,\dfrac{1}{x+2}=\dfrac{x\left(2-x\right)}{x\left(2-x\right)\left(2+x\right)}\\ \dfrac{8}{2x-x^2}=\dfrac{8}{x\left(2-x\right)}=\dfrac{8\left(2+x\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(b,\dfrac{2-x}{x^2-9}=\dfrac{2-x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(2-x\right)}{x\left(x-3\right)\left(x+3\right)}\\ \dfrac{-1}{x^2+3x}=\dfrac{-1}{x\left(x+3\right)}=\dfrac{-\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3-x}{x\left(x-3\right)\left(x+3\right)}\)