giải các pt
a) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
b) \(6sinx-2cos^3x=\frac{5sin4x.sinx}{2cos2x}\)
c) \(cos^3x=2sinx.sin\left(\frac{\pi}{3}-x\right).sin\left(x+\frac{\pi}{3}\right)\)
d) \(cos2x\left(sinx+cosx\right)-4cos^3x\left(1+sin2x\right)=0\)
Giải pt
sin x.cos x + 2sin x+sin^2 x= 3 +3cos x
Giải các pt sau:
a) \(3\left(\sin x+\cos x\right)-4\sin x\cos x=0\)
b) \(12\left(\sin x-\cos x\right)-\sin2x=2\)
1. Tập giá trị của hs: y = sin2x + cos2x là?
2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)
4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)
5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)
6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)
7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)
8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:
9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)
10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)
11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?
12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?
13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?
14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?
15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)
Giải phương trình : \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}\sin\left(x+\frac{\Pi}{4}\right)\)
Giải pt: \(\sin^2X+3\tan X=\cos X\left(4\sin X-\cos X\right)\)
Số điểm biểu diễn của pt ở cung phần tư thứ I và III của đường tròn lượng giác là?\(8\sin X=\frac{\sqrt{3}}{\cos X}+\frac{1}{\sin X}\)
\(1,sin^{2008}x+cos^{2008}x=1\)
\(2,sin^5x+cos^5x+sin2x+cos2x=1+\sqrt{2}\)
\(3,4cos^2x+3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)