sin4x + sin2x - 2cos²x = 0
sinx + sin5x + 1 - cos²x = 0
Giải Pt. Tìm nghiệm \(x\in\left[0;2\pi\right]\)
2cos(x+\(\frac{\pi}{4}\)) +\(\sqrt{2}\) = 0
2cos^22x+5sin2x-4=0
2cos^22x+2sinx=sin2x+2
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
1Tìm m để phương trình mcos²x - msin2x - msin²x=0 để phương trình có nghiệm.
2 Tìm x € (0; π/2) thỏa mãn pt cos5x.sin4x = cos3x.sin2x
Giải phương trình:
a)\(\dfrac{\left(cosx-1\right)\left(2cosx-1\right)}{sinx}=1-sin2x+2cos^2x\)
b)\(sin3x+cos3x-2\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)+1=0\)
phiền mấy bạn giải giúp mình 2 bài trên.... cảm ơn trước nha
\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x+1=2cos^2\left(\dfrac{pi}{4}-\dfrac{x}{2}\right)\)
giải các phương trình sau:
2cos2x +7sin22x = 0
2cosx(1-sinx) + \(\sqrt{3}\)cos2x =0