b: Ta có: ΔABC cân tại A
mà AE là đường phân giác
nên AE là đường trung trực của BC
b: Ta có: ΔABC cân tại A
mà AE là đường phân giác
nên AE là đường trung trực của BC
1.Cho \(\Delta\)ABC có AB=AC. Kẻ AE là phân giác cua góc \(\widehat{BAC}\) (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy F sao cho AF=AC. CMR
a)\(\Delta\)BDF=\(\Delta\)EDC
b)AE là đường trung trực của đoạn thẳng BC
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
Bài 6. Cho ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC) Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC
a.ΔABD=ΔAED
b.AD ⊥ FC
c.ΔBDF=ΔEDC và BF=EC
d.F,D,E thẳng hàng
cho ΔABC cân tại A, tia phân giác của góc A cắt BC tại I. Lấy điểm M bất kì trên cạnh AI. Đường thẳng CM cắt AB tại D.
a, Chứng minh CM = BM
b, Chứng minh AI là đường trung trực của đoạn thẳng BC
c, Từ D kẻ DH ⊥ BC(H ϵ DC). Chứng minh góc BAC = góc BDH x 2
cho tam giác abc vuông tại c trôn cạnh ab lấy d sao cho ad bằng ac kẻ qua d đg thẳng vuông góc với ab cắt bc tại e, ae cắt cd tại i ..a,cm aelaf tia phân giác của góc cab....b,cm ae là đg trung trực của cd ...c, so sánh cd và bc..d,m là trung điêm của bc, dm cắt bi tại g ,cg cắt db tại k cm k là rung điêm của db
BÀI 8 : Cho tam giác ABC vuông tại C ,Trên cạnh AB lấy điểm D sao cho AD =AB . Kẻ qua D đường thẳng vuông góc với BC tại E . AE cắt CD tại I . a)chứng minh AE là phân giác góc CAB. b) Chứng minh AD là trung trực của CD . c) so sánh CD và BC d) M là trung điểm của BC ,DM cắt BI tại G,CG cắt DB tại K.Chứng minh K là trung điểm của DB