Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trường Nguyễn Công

 Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là 
giao điểm của AB và HE. Chứng minh rằng: 
a) ΔABE = ΔHBE 
b) BE là đường trung trực của đoạn thẳng AH. 
c) EK = EC 
d) AE < EC  
 

Kinomoto Sakura
14 tháng 7 2021 lúc 10:53

undefined

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ABE = HBE (BE là tia phân giác giả thiết)

BE cạnh chung

⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)

Vậy ΔABE = ΔHBE

b) AB = HB (2 cạnh tương ứng)

⇒ B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng)

⇒ E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH

Vậy BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC có:

AEK = HEC (đối đỉnh)

AE = HE (cmt)

⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)

⇒ EK = EC (2 cạnh tương ứng) (3)

Vậy EK = EC

d) Ta có: ΔAEK vuông tại A

⇒ K<A

⇒ AE<KE (4)

Từ (3) và (4) ⇒ AE<EC

Vậy AE<EC

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:11

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)

b) Ta có: ΔABE=ΔHBE(cmt)

nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:12

c) Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)

Suy ra: EK=EC(Hai cạnh tương ứng)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H)

nên AE<CE


Các câu hỏi tương tự
phạm vũ quốc cường
Xem chi tiết
Cô bé áo xanh
Xem chi tiết
Cô bé áo xanh
Xem chi tiết
Cô bé áo xanh
Xem chi tiết
nguyễn bảo nam
Xem chi tiết
minhductran
Xem chi tiết
Công chúa vui vẻ
Xem chi tiết
Hoàng Đức Thịnh
Xem chi tiết
Vi pe
Xem chi tiết