a) Xét hai tam giác vuông ΔABE và ΔHBE có:
∠ABE = ∠HBE (BE là tia phân giác giả thiết)
BE cạnh chung
⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)
Vậy ΔABE = ΔHBE
b) AB = HB (2 cạnh tương ứng)
⇒ B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng)
⇒ E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH
Vậy BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC có:
∠AEK = ∠HEC (đối đỉnh)
AE = HE (cmt)
⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)
⇒ EK = EC (2 cạnh tương ứng) (3)
Vậy EK = EC
d) Ta có: ΔAEK vuông tại A
⇒ ∠K<∠A
⇒ AE<KE (4)
Từ (3) và (4) ⇒ AE<EC
Vậy AE<EC
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)
b) Ta có: ΔABE=ΔHBE(cmt)
nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EA=EH(cmt)
nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của AH
c) Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)
Suy ra: EK=EC(Hai cạnh tương ứng)
d) Ta có: EA=EH(cmt)
mà EH<EC(ΔEHC vuông tại H)
nên AE<CE