Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Công chúa vui vẻ

Cho tam giác ABC vuông tại A, AB<AC, phân giác BE của góc B. Lấy điểm H thuộc BC sao cho BH=BA

a) Chứng minh EH vuông góc BC

b) Chứng minh BE là đường trung trực của AH

c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK=EC

d) Chứng minh AH//KC

e) Gọi M là trung điểm của KC. Chứng minh 3 điểm B,E,M thẳng hàng

nguyen thi vang
4 tháng 2 2018 lúc 13:34

B A C H E K M

a) Xét \(\Delta ABE,\Delta HBE\) có:

\(AB=BH\left(gt\right)\)

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )

\(BE:Chung\)

=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)

=> \(\widehat{BAE}=\widehat{BHE}=90^o\) (2 góc tương ứng)

Do đó: \(EH\perp BC\) (đpcm)

b) Xét \(\Delta ABH\) có:

\(AB=BH\left(gt\right)\)

=> \(\Delta ABH\) cân tại B

Mà thấy : BE là tia phân giác của \(\widehat{B}\) (gt)

Suy ra : BE đồng thời là đường trung trực trong \(\Delta ABH\)

\(\Rightarrow\left\{{}\begin{matrix}AE=EH\\BE\perp AH\end{matrix}\right.\) (tính chất đường trung trực)

Do đó : BE là đường trung trực của AH => đpcm

c) Ta chứng minh được : \(\Delta BEK=\Delta BEC\left(c.g.c\right)\)

Suy ra : \(EK=EC\left(đpcm\right)\)

d) Xét \(\Delta BAH\) cân tại B (cmt) có :

\(\widehat{BAH}=\widehat{BHA}=\dfrac{180^{^O}-\widehat{B}}{2}\left(1\right)\)

Xét \(\Delta BKC\) có :

\(BK=BC\)[ \(\Delta BEK=\Delta BEC\left(cmt\right)\)]

=> \(\Delta BKC\) cân tại B

Ta có: \(\widehat{BKC}=\widehat{BCK}=\dfrac{180^{^O}-\widehat{B}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{BAH}=\widehat{BKC}\left(=\dfrac{180^{^O}-\widehat{B}}{2}\right)\)

Lại thấy rằng : 2 góc này ở vị trí đồng vị

=> \(AH//KC\left(đpcm\right)\)

e) Xét \(\Delta EKC\) có :

\(EK=EC\left(câuc\right)\)

=> \(\Delta EKC\) cân tại E

Mà có : EM là trung tuyến trong \(\Delta EKC\) (KM = MC)

=> E, M thẳng hàng (3)

Lại có : BE là trung trực trong \(\Delta ABH\) (câub)

=> B,E thẳng hàng (4)

Từ (3) và (4) => \(B,E,M\) thẳng hàng (đpcm)


Các câu hỏi tương tự
minhductran
Xem chi tiết
phạm vũ quốc cường
Xem chi tiết
Trường Nguyễn Công
Xem chi tiết
Phạm Khánh Ly
Xem chi tiết
nguyễn bảo nam
Xem chi tiết
Thuỳ Dung
Xem chi tiết
Lê Hồng Kiên
Xem chi tiết
bùi thị như quỳnh
Xem chi tiết
Như Ngọc
Xem chi tiết