1.
Đặt A = \(x^2+6x+15=x^2+2.x.3+9+6=\left(x+3\right)^2+6\)
\(\left(x+3\right)^2+6\ge6\) với mọi x thuộc R
=> MinA = 6 khi x = -3
2.
\(A=m^2-m+1=m^2-2.m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> MinA = \(\dfrac{3}{4}\) khi \(m=\dfrac{1}{2}\)