Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Phương Thảo

1.

\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\). E, F thứ tự là hình chiếu của H trên AB, AC. Đặt BC= 2a( a >0). Chứng minh

a. \(BE^2=\dfrac{BH^3}{BC};CF^2=\dfrac{CH^3}{BC}\)

B. tính giá trị của \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\) theo a

2.

\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\), đường cao BK. Chứng minh: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

3.

\(\Delta ABC\left(\widehat{A}=90^0\right),AH\perp BC\). Chứng minh: \(BC^2=2AH^2+BH^3+CH^3\)

Phương An
12 tháng 10 2017 lúc 21:08

Câu 2:

A B C M K H

Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.

Từ giả thiết, ta có:

\(\cdot\) AH // BM (do cùng _I_ BC)

\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)

Suy ra AH là đường trung bình của \(\Delta BMC\)

\(\Rightarrow BM=2AH\)

Xét \(\Delta BMC\) vuông tại B có BK là đường cao

\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)

Phương An
12 tháng 10 2017 lúc 21:22

Câu 1:

A B C H E F

Xét \(\Delta ABC\) vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH\times BC\)

Xét \(\Delta HBA\) vuông tại H có HE là đường cao

\(\Rightarrow BH^2=BE\times AB\)

\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)

Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)

Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)


Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
Hello mọi người
Xem chi tiết
Trịnh Giang
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Nhật Linh Đặng
Xem chi tiết
Ju Moon Adn
Xem chi tiết
Duyên Lương
Xem chi tiết
nguyễn phúc nguyên
Xem chi tiết
Thanh Trúc
Xem chi tiết