Cho \(\Delta ABC\) vuông tại A, đường cao AH.
a. Biết BH=4cm, CH=9cm. Tính AH, AB, AC, \(\widehat{B}\).
b. Vẽ HM, HN vuông góc với AB, AC. Chứng minh AM.AB=AN.AC
c. Đường thẳng vuông góc với BC tại B cắt AC tại E. Chứng minh BH.BC=AE.AC
d. Chứng minh \(\dfrac{BM}{CN}=\dfrac{AB^3}{AC^3}\).
________giúp e phần d với___________________
Lời giải:
d)
Xét tam giác vuông tại $H$ là $HAC$ có đường cao $HN$
Khi đó , áp dụng hệ lượng trong tam giác vuông ta có:
\(CN.CA=HC^2\)
Tương tự với tam giác $HAB$ có đường cao $HM$
\(BM.BA=BH^2\)
\(\Rightarrow \frac{BM.BA}{CN.CA}=\frac{BH^2}{CH^2}(1)\)
Xét tam giác vuông tại $A$là $ABC$ có đường cao $AH$. Áp dụng hệ thức lượng:
\(\left\{\begin{matrix} BH.BC=AB^2\\ CH.BC=AC^2\end{matrix}\right.\Rightarrow \frac{BH}{CH}=\frac{AB^2}{AC^2}\Rightarrow \frac{BH^2}{CH^2}=\frac{AB^4}{AC^4}(2)\)
Từ \((1);(2)\Rightarrow \frac{BM}{CN}=\frac{AB^3}{AC^3}\)