Cho x, y, z >0. Tìm GTNN của biểu thức
\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
1. Cho a,b,c biết: a.b.c khác 0
và ab+bc+ca=0. Tính: P=(a+b)(b+c)(c+a)/abc
2.CMR: Nếu a,b,c>0 và a,b,c khác nhau thì
A=a^3+b^3+c^3-3abc > 0
3.Cho(x+y+z)(xy+yz+zx)=xyz
Cmr:x^2017+y^2017+z^2017=(x+y+z)^2017
Phân tích đa thức thành nhân tử
a) \(\left(x+y-2z\right)^3+\left(y+z-2x\right)^3+\left(z+x-2y\right)^3\)
b) \(a\left(c^2+b^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+bc\right)\)
c) (a+b+c)(ab+ac+bc)-abc
d) \(c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
e) xy(x+y)-yz(y+z)+xz(x-z)
a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Xác định a,b,c sao cho đa thức f(x)=x^3+ax^2+bx+c thỏa mãn f(0)=3 , chia chox-1 dư 3 chia cho x+1 dư 5
b)cho a,b,c,x,y,z là các số thỏa mãn điều kiện :
a^2+b^2+c^2=36; x^2+y^2+z^2=64;ax+by+cz=48Tính giá trị phân thức a+b+c/x+y+z
Cho các số a,b,c khác 0 thõa mãn \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị của biểu thức \(A=x^{2008}+y^{2008}+z^{2008}\)
Cho các số a,b,c khác 0 thõa mãn \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị của biểu thức \(A=x^{2008}+y^{2008}+z^{2008}\)
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Cho và .
Khi đó, giá trị của biểu thức bằng
cho a<b<c<d và có x=(a+b)(c+d),y=(a+c)(b+d),z=(a+d)(c+b). Sắp xếp theo thứ tự giảm dần của x,y,z