Cho x, y , z là các số khác không , và x+y+z khác 0 x=by+cz ; y=ax+cz ; z=ax+by
Tính giá trị biểu thức A= \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
nếu x^2 -yz = a ; y^2 - xz = b ; z^2 - xy = c thì D = ax + by + cz chia hết cho a + b + c
1) Xác định số a,b để đa thức x^4-3x^3+3x^2 +ax+b chia hết cho đa thức x^2-3x+4
2)Cho x+y=1.Tính giá trị của biểu thức: A=x^3+y^3+3xy
3)Tình già trị của biểu thức M=x^6 -2x^4+x^3+x^2-x biết x^3-x=8
4)Chứng minh rằng lập phương của một số nguyên cộng với 17 lần số đó một số chia hết cho 6
5) Chứng minh các biểu thức sau không phụ thuộc vào biến số x:
-x(x+2y)+(x+y)^2+(x-5)^2-(x-2)(x-8)+(3x-2)^2+3x(4-3x)
6) Cho a+b+c=0; a,b,c khác 0. Tính P=a^2 + b^2 + c^2
bc ca ab
xác định a;b để đa thức -2x^3+ax+x chia cho (x+1) dư -6 chia cho x-2 dư 21
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\). Rút gọn biểu thức \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
Rút gọn phân thức sau :
M=(ax^2 + by^2 + cz^2 ) / ( bc(y-z)^2 +ca(z-x)^2+ab(x-y)^2)
với ax+by+cz=0 ( a + v + c khác 0 )
Cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) khác 0. Tính giá trị của \(\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{ax^2+by^2+cz^2}\)
1) phân tích đa thức thành nhân tử :
a) x^2-10x+9 b) x^2-2x-15 c) 3x^2-7x+2 d) x^3-12+x^2
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Toán 8 tập 1 ôn tập chương 1
Bài 1: phân tích đa thức sau thành nhân tử:
a) x2 + 2x2 +x
b) xy + y2 - x- y
c) x^2 - xy +3x-3y
d) x^3 - 4x^2 -xy^2 +4x
e) ( x+1)(x+2)(x+3)(x+4) - 3
Bài 2: Rút gọn biểu thức sau:
P= 2.(x+y)(x-y) - (x-y)^2 + (x+y)^2 -4y^2
Bài 3: Tìm a,b để :
a) ( 6x^4 - 7x^3 + ax^2 + 3x +2 ) chia hết cho ( x^2 -x +b)
b) ( x^4 - 3x^3 - 3x^2 + ax +b ) chia hết cho ( x^2 - 3x +4)
c) (x^4 + x^3 - x^2 +ax + b) chia hết cho ( x^2 + x -2)
Giúp mình với m.n. Mình cảm ơn nhiều ạ