Rút gọn:
A=\(\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)
Cho biết ax + by + cz = 0
Rút gọn: \(A=\frac{bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2}{ax^2+by^2+cz^2}\)
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\). Rút gọn biểu thức \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
Giải phương trình:
a)\(\dfrac{x-49}{50}\)+\(\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
cho B=\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) tìm các giá trị của x để B có nghĩa
b)Tìm các giá trị của x để B=0
Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0
Cho \(Q=\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
a Rút gọn Q
b Tìm \(x\in Z\) để Q có giá trị nguyên
Bài tập 1:
Cho x,y > 0. Chứng minh rằng: ( 3x+3y )(\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\)) ≥4
Bài tập 2: Cho a,b,c> 0. Chứng minh rằng:
a) \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)≤\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
b) \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)≤\(\dfrac{3}{2}\)
A= \(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\) với x \(\ne\) +-2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x, biết x2 = 2x
c) Tìm giá trị của x để A nhận giá trị dương
Cho x+y=1 \(\left(x,y\ne0\right)\)
chứng minh: \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{z\left(x-y\right)}{x^2y^2+3}\ne0\)