1) Xác định số a,b để đa thức x^4-3x^3+3x^2 +ax+b chia hết cho đa thức x^2-3x+4
2)Cho x+y=1.Tính giá trị của biểu thức: A=x^3+y^3+3xy
3)Tình già trị của biểu thức M=x^6 -2x^4+x^3+x^2-x biết x^3-x=8
4)Chứng minh rằng lập phương của một số nguyên cộng với 17 lần số đó một số chia hết cho 6
5) Chứng minh các biểu thức sau không phụ thuộc vào biến số x:
-x(x+2y)+(x+y)^2+(x-5)^2-(x-2)(x-8)+(3x-2)^2+3x(4-3x)
6) Cho a+b+c=0; a,b,c khác 0. Tính P=a^2 + b^2 + c^2
bc ca ab
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)