Đa giác. Diện tích của đa giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 9:39

a: Xét tứ giác BDEF có

C là trung điểm của BE

C là trung điểm của DF

Do đó: BDEF là hình hình hành

mà BE⊥DF

nên BDEF là hình chữ nhật

Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 9:53

a. Vì C là trung điểm BE và DF nên BDEF là hình bình hành

Mà \(BE\bot DF\) tại C (ABCD là hcn) nên BDEF là hình thoi

b. Vì  ABCD là hcn nên \(AC=BD\)

Lại có BDEF là hình thoi nên \(BD=DE\)

Do đó: \(AC=DE\) 

c. Vì BDEF là hthoi nên C là trung điểm BE và DF

Mà ABCD là hcn nên \(CE=BC=AD;CE\text{//}AD\)

Do đó ADEC là hcn

Mà H là trung điểm CD nên H là trung điểm AE

Mà K là trung điểm EF nên HK là đtb \(\Delta AEF\)

Do đó HK//AF

d. Gọi \(\left\{G\right\}=AF\cap BC\)

Ta có \(S_{ADH}=\dfrac{1}{2}AD\cdot HD=\dfrac{1}{2}CE\cdot CH=S_{CHE}\)

Cmtt câu c ta được ABFC là hình bình hành

Do đó G là trung điểm AF và BC

Do đó \(S_{ABG}=\dfrac{1}{2}AB\cdot BG=\dfrac{1}{2}CF\cdot CG=S_{CGF}\)

Lại có EG,FH là trung tuyến \(\Delta AEF\) cắt nhau tại C

Do đó C là trọng tâm \(\Delta AEF\)

\(\Rightarrow\dfrac{S_{CEF}}{S_{HEF}}=\dfrac{CF}{HF}=\dfrac{2}{3};\dfrac{S_{HEF}}{S_{AEF}}=\dfrac{HE}{AE}=\dfrac{1}{2}\\ \Rightarrow\dfrac{S_{CEF}}{S_{AEF}}=\dfrac{2}{3}\cdot\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow S_{CEF}=\dfrac{1}{3}\cdot30=10\left(cm^2\right)\\ S_{ABCD}=S_{AHD}+S_{ABG}+S_{AHCG}=S_{CHE}+S_{GCF}+S_{AHCG}=S_{AEF}-S_{CEF}=30-10=20\left(cm^2\right)\)

Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 9:53


Các câu hỏi tương tự
Lê Thị Hồng Vân
Xem chi tiết
Nguyên Huỳnh
Xem chi tiết
Bảo Khánh
Xem chi tiết
Đạt Đinh
Xem chi tiết
Khánh Linh
Xem chi tiết
lê huyền trang
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Mã Thu Thu
Xem chi tiết
thuy duong Doan
Xem chi tiết
Nguyễn Thiện Nhân
Xem chi tiết