Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.
Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.
Cho tam giác ABC có AB>AC. Trên cạnh AB lấy điểm M sao cho AM=\(\dfrac{1}{3}\)AB, trên AC lấy điểm N sao cho AN=\(\dfrac{1}{3}\) AC. Gọi O là giao điểm của BM và CN, F là giao điểm của AO và BC, vẽ AI \(\perp\)BC tại I, OG \(\perp\) BC tại G, BD \(\perp\) FA tại D, CE \(\perp\) FA tại E. So sánh CA với BD, OG với IA, OA với FO?
Cho tam giác ABC,lấy điểm M thuộc cạnh AB sao cho BM=\(\dfrac{1}{3}\)BA.
Gọi N là trung điểm của cạnh BC. Tính tỉ số \(\dfrac{SBMN}{SABC}\)
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho tam giác ABC, M là trung điểm của cạnh AB, N thuộc cạnh AC sao cho SAMN =\(\dfrac{1}{8}SABC\). Tính tỉ số \(\dfrac{AN}{AC}\)
1/ Cho H tùy ý nằm trong tam giác ABC. Tia AH,BH,CH cắt BC,AC,AB tại D,E,F. Chứng minh \(\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}\ge6\)
2/ Cho hình bình hành ABCD. Trên BC,CD lấy M,N tùy ý. AM,AN cắt BD tại E,F. Vẽ Ex//AD, Fy//AD, \(Ex\cap Fy=\left\{K\right\}\)
a) Chứng minh \(S_{AEF}=S_{KBD}\)
b) Chứng minh rằng nếu \(S_{AEF}=S_{EMNF}\) thì M,N,K thẳng hàng
3/ Tam giác ABC có 3 đường phân giác AD,BE,CF. Gọi \(S_{ABC}=S,S_{DEF}=S'\). Chứng minh rằng \(S\ge4S'\)
Câu 11. Cho tam giác ABC nhọn có trực tâm H. Các đường vuông góc với AB tại B và vuông góc với
AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H,M,D thẳng hàng
c) Gọi I là trung điểm của AD. Chứng minh IB = IC
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi
Cho hình bình hành ABCD. Trên cạnh BC và DC lần lượt lấy hai điểm M, N. Đặt \(\dfrac{MB}{MC}=x\), \(\dfrac{NC}{ND}=y\). Đường chéo BD cắt AM và AN lần lượt tại P và Q. Tính \(\dfrac{S_{APQ}}{S_{AMN}}\).
Cho tam giác ABC. Trên cạnh Ab, AC lần lượt lấy hai điểm M và N sao cho AM=\(\dfrac{2}{3}\).BM; AN=\(\dfrac{3}{2}\).NC. Gọi O là giảo điểm của BN và CM. Chứng minh: SBOC=2.SAMON.