1, tan4x - 3tan3x + 3tan2x - 3tanx + 2 = 0
⇔ (tanx - 1)(tanx - 2)(tan2x + 1) = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.,k\in Z\)
2, Ta có công thức nhân ba:
sin3x = sin(2x + x) = sin2x cosx + cos2x . sinx
= 2sinx.cos2x + (1 - 2sin2x) . sinx
= 2sinx (1 - sin2x) + sinx - 2sin3x
= 2sinx - 2sin3x + sinx - 2sin3x
= 3sinx - 4sin3x
Vậy ta có phương trình
4 . [3sinx - 4sin3x - (1 - 2sin2x)] = 5sinx - 5
⇔ 4 .(3sinx - 4sin3x - 1 + 2sin2x) - 5sinx + 5 = 0
⇔ 12sinx - 16sin3x - 4 + 8sin2x - 5sinx + 5 = 0
⇔ -16sin3x + 8sin2x + 7sinx + 1 = 0
⇔\(\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{4}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\), k ∈ Z
1.
\(tan^4x-3tan^3x+3tan^2x-3tanx+2=0\)
\(\Leftrightarrow\left(tan^3x-2tan^2x+tanx-2\right)\left(tanx-1\right)=0\)
\(\Leftrightarrow\left(tan^2x+1\right)\left(tanx-2\right)\left(tanx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx-2=0\\tanx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=2\\tanx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan2+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)




