Cho 2 hàm số y = \(x^2\) và y = mx + 4, với m là tham số.
1. Khi m = 3, tìm tọa độ giao điểm của 2 hàm số trên
2. C/m rằng với mọi giá trị của m, đồ thị của 2 hàm số đã cho luôn cắt nhau tại 2 điểm phân biệt: \(A_1\left(x_1;y_1\right)\) và \(A_2\left(x_2;y_2\right)\). Tìm tất cả các giá trị của m sao cho \(y_1^2+y_2^2\) = \(7^2\)
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A kẻ 2 tiếp tuyến AB, AC và cát tuyến AMN với đường tròn (B,C,M,N thuộc đường tròn; AM < AN). Gọi I là giao điểm thứ 2 của CE với đường tròn ( E là trung điểm của MN)
a/ C/m 4 điểm A,O,E,C cùng nằm trên đường tròn.
b) C/m góc AOC = góc BIC
c) C/m : BI // MN
d) Xác định vị trí cát tuyến AMN để diện tích △AIN lớn nhất