HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
= \(\left(9x^2+12xy+4y^2\right)+\left(x^2+6x+9\right)+2017\)
\(=\left(3x+2y\right)^2+\left(x+3\right)^2+2017\ge2017\)
=> \(MinP=2017\Leftrightarrow\left\{{}\begin{matrix}2y=-3x\\x=-3\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=-3\\y=\dfrac{9}{2}\end{matrix}\right.\)
Kẻ \(IF ⊥ AE;GJ⊥AE\)
=> IF // GJ
Tứ giác AGEI là hbh do có AG // IE ; AI // GE
=> AI = GE ; ^IAF = ^GEJ (slt)
=> t/g AIF = t/g EGJ (ch-gn)
=> IF = GJ
S(AIE) = 1/2 . IF . AE S(GJE)= 1/2 . AE . GJ
=> S(AIE) = S(GJE) CMTT : S(ADC) = S(ABC) ; S(EHC) = S(EJC)
=>S(ADC) - S(AIE) - S(EHC) = S(ABC) - S(EJC) - S(GJE)
=> S(HDIE) = S(GBKE)
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
Xét t/g AHD vuông tại H có
\(\widehat{HAD}+\widehat{BDA}=90^o\) (t/c)
=> \(\widehat{DAC}+\widehat{BDA}=90^o\)
Mà \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^o\)
=> \(\widehat{BAD}=\widehat{BDA}\)
=> t/g ABD cân tại B
Thay x = 2 vào hs f(x) có
f(2) = 2a = -5
=> a = - 5/2 = -2,5
Thay a = - 2,5 vào hs f(x) có
f(x) = -2,5x
Thay x = -1 vào hs f(x) có
f(-1)=2,5
Thay x = 23 vào hs f(x) có
f(23) = - 57,5
Bạn nên ktra lại con số 15cm
a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có
\(AB^2+AC^2=BC^2\)
=> \(AC=\sqrt{161}\) (cm)
b/ t/g ABH vuông tại H và t/g EBH vuông tại H có
AB = EB
BH : chung
=> t/g ABH=t/g EBH (ch-cgv)
=> HA = HE (2 cạnh t/ứ)
c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)
=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)
=> \(\widehat{EAD}=\widehat{AEC}\)
=> t/g AEC = t/g EAD
=> AC = DE
d/
AB = BEAD = EC
=> AB + AD = BE + EC
=> BD = BC=> t/g BCD cân tại B
Có t/g ABH = t/g EBH
=> \(\widehat{ABH}=\widehat{EBH}\)
=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg
=> BH đồng thời là đường cao
=> BH ⊥ DC
\(f\left(x\right)=ax^2+bx+c\)
=> \(f\left(-2\right)=4a-2b+c=-3\)
Có f(x) chia cho x và x + 4 đều dư 5
=> \(\left\{{}\begin{matrix}f\left(0\right)=0+c=5\\f\left(-4\right)=16a-4b+c=5\end{matrix}\right.\)
Ta có hpt:
\(\left\{{}\begin{matrix}4a-2b+c=-3\\c=5\\16a-4b+c=5\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}c=5\\2\left(2a-b\right)=-8\\4\left(4a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=4a\\2a-b=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=5\end{matrix}\right.\)
Khi đó \(f\left(x\right)=2x^2+8x+5\)
\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)
TH1 : \(4y^2=0\)
Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.
=> Không có số nguyên x nào thỏa mãn.
TH2 : \(4y^2>0\)
Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)
Mà y nguyên
=> \(4y^{2}=4\)
=> y ∈ {1 ; -1}
Với y = 1
=> x + 3 = 1
=> x = -2 (tm)Với y = -1
=> x - 1 = 1
=> x = 2 (tm)Vậy..
Bạn gõ thừa chữ "cân"
a/ Xét t/g ABC vuông tại A có
\(\widehat{ABC}+\widehat{ACB}=90^o\) (t/c)
\(\Rightarrow\widehat{ABC}=90^o-40^o=50^o\)
b/ Xét t/g AMB và t/g EMC có
AM = EM
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)MB = MC
=> t/g AMB = t/g EMC (c.g.c)c/ Có
AE // CK
=> \(\widehat{AEK}+\widehat{EKC}=180^o\) (tcp)
=> \(\widehat{AEK}=\widehat{AEC}+\widehat{CEK}=90^o\)
Xét t/g ABC vuông tại A có AM là đường trung tuyến
=> AM = 1/2 BC = BM
=> t/g AMB cân tại A
=> \(\widehat{ABC}=\widehat{BAM}\)
Mà \(\widehat{BAM}=\widehat{CEA}\)
=> \(\widehat{CBA}+\widehat{CEK}=90^o\)
=> \(\widehat{CEK}=\widehat{ACB}\)
Alooo. Đợt trước anh bảo đợi bảng xếp hạng ổn định rồi tổ chức event jj đó "đền bù" cho box toán mà sao em vừa lót dép ngồi hóng vừa ôn thi mãi từ bấy đến giờ vẫn chẳng thấy đâu zợ?:'(