Xét t/g AHD vuông tại H có
\(\widehat{HAD}+\widehat{BDA}=90^o\) (t/c)
=> \(\widehat{DAC}+\widehat{BDA}=90^o\)
Mà \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^o\)
=> \(\widehat{BAD}=\widehat{BDA}\)
=> t/g ABD cân tại B
Xét t/g AHD vuông tại H có
\(\widehat{HAD}+\widehat{BDA}=90^o\) (t/c)
=> \(\widehat{DAC}+\widehat{BDA}=90^o\)
Mà \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^o\)
=> \(\widehat{BAD}=\widehat{BDA}\)
=> t/g ABD cân tại B
cho tam giácABC vuông tại A.kẻ AH vuông góc vớiBC.Tia phân giác HAC cắt BC ở D.CMR Tam giác ABD cân
Cho tam giác ABC cân ở A. Kẻ AH vuông góc BC tại Ha) CM: tam giác ABH= tam giác ACH và góc BAH = góc CAHb) Kẻ HD vuông góc AB; HE vuông góc AC. CM: tam giác ADE là tam giác cân c) CM: DE//BC
Cho tam giác ABC vuông tại A có AB=5cm;AC=12cm.Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. Chứng minh tam giác BKC cân và B,G,D thẳng hàng ( với G là trọng tâm của tam giác BKC.
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
Cho tam giác ABC cân tại A vẽ AH vuông góc với BC tại H.Biết AB=10cm;BH==6cm
a)tính AH
b)tam giác ABD = tam giác ACH
c) trên BA lấy D,CA lấy E sao cho BD = CE . Chứng minh tam giác HDE cân
d) Chứng minh AH là trung trực của DE
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC, kẻ CK vuông góc với AB
a) chứng minh tam giác ABH = tam giác ACK
b) chứng minh tam giác BHC=tam giác CKB
c) chứng minh KH//BC
Bài 2: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC).
Chứng minh:
a) AH là tia phân giác của Â
b) AH là đường trung trục của BC