HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+c+\(\sqrt{abc}\)=4.
tính giá trị của biểu thức: A=\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
cho 3 số x,y,z không âm thỏa mãn x3+y3+z3=3. Tìm GTLN của A=3(xy+yz+zx)-xyz
giả sử x,y,z là những số dương thay đổi thỏa mãn điều kiện x+y+z=1.
hãy tìm giá trị lớn nhất của biểu thức P= \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\abc\ge1\end{matrix}\right.\)
chứng minh: \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\) ≤\(\sqrt{2}\)(a+b+c)
cho abc=1,a+b+c>0
chứng minh : \(\dfrac{1}{a\left(1+b\right)}\)+\(\dfrac{1}{b\left(1+c\right)}\)+\(\dfrac{1}{c\left(1+a\right)}\) ≥ \(\dfrac{3}{2}\)
cho 3 số tự nhiên a,b,c là độ dài 3 cạnh của 1 tâm giác.chứng minh nếu a+b là 1 ước lẻ của a(b-c)2+b(a-c)2 thì a+b là hợp số
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
chứng minh nếu p và 8p2+1 là 2 số nguyên tố thì 8p2-1 là số nguyên tố