Chọn hệ trục tọa độ \(Oxy\) sao cho: \(B\left(0;0\right)A\left(0;6\right);C\left(6;0\right);D\left(6;6\right)\)
\(I\) là trung điểm \(BC\Rightarrow I\left(\dfrac{0+6}{2};\dfrac{0+0}{2}\right)=\left(3;0\right)\)
\(A\left(0;6\right)\in\left(P_1\right)\Rightarrow\left(P_1\right):y=ax^2+6\)
\(I\left(3;0\right)\in\left(P_1\right)\Rightarrow0=9a+6\Rightarrow a=-\dfrac{2}{3}\)
\(\Rightarrow\left(P_1\right):y=-\dfrac{2}{3}x^2+6\)
Tương tự \(\left(P_2\right):y=-\dfrac{2}{3}\left(x-6\right)^2+6\)
\(M\left(a;6\right)\left(0\le a\le6\right);N\left(6-a;6\right)\)
\(Q\left(a;-\dfrac{2}{3}a^2+6\right)\in\left(P_1\right);P\left(6-a;-\dfrac{2}{3}a^2+6\right)\in\left(P_2\right)\)
\(MN=6-2a;MQ=\dfrac{2}{3}a^2\)
\(S_{MNPQ}=S\left(a\right)=MN.MQ=\left(6-2a\right).\dfrac{2}{3}a^2=\dfrac{4}{3}\left(3a^2-a^3\right)\)
\(S'\left(a\right)=\dfrac{4}{3}\left(6a-3a^2\right)=4a\left(2-a\right)\)
\(S'\left(a\right)=0\Leftrightarrow a=0\cup a=2\)
Lập BTT ta thấy \(S\left(a\right)_{max}=S\left(2\right)=\dfrac{4}{3}\left(12-8\right)=\dfrac{16}{3}\approx5,3\left(đvdt\right)\)
Vậy \(S_{MNPQ}\left(max\right)=5,3\left(đvdt\right)\) thỏa đề bài