a)
Thay \(B\left(4;-1;2\right)\) vào \(\left(\alpha\right)\Rightarrow4.4+2.\left(-1\right)-2-12=0\left(đúng\right)\Rightarrow B\in\left(\alpha\right)\)
Thay \(C\left(1;3;-2\right)\) vào \(\left(\alpha\right)\Rightarrow4.1+2.3+2-12=0\left(đúng\right)\Rightarrow C\in\left(\alpha\right)\)
\(\Rightarrow BC\in\left(\alpha\right)\Rightarrow Sai\)
b)
\(\overrightarrow{AB}=\left(1;-2;3\right)\)
\(\overrightarrow{AC}=\left(-2;2;-1\right)\)
\(\Rightarrow\overrightarrow{n\left(ABC\right)}=\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(-4;-5;-2\right)=-\left(4;5;2\right)\)
\(\left(ABC\right):4\left(x-3\right)+5\left(y-1\right)+2\left(z+1\right)=0\) hay \(4x+5y+2z-15=0\)
\(R=d\left(I;\left(ABC\right)\right)=\dfrac{\left|4.\left(-4\right)+5.4+2.\left(-1\right)-15\right|}{\sqrt{4^2+5^2+2^2}}=\dfrac{13}{3\sqrt{5}}\ne\dfrac{26}{\sqrt{5}}\Rightarrow Sai\)
c) \(\left(AB\right):\left\{{}\begin{matrix}x=4+t\\y=-1-2t\\z=2+3t\end{matrix}\right.\) \(\Rightarrow Sai\)
d) Gọi \(\overrightarrow{IA}-4\overrightarrow{IB}-3\overrightarrow{IC}=\overrightarrow{0}\)
\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{1.3-4.4-3.1}{1-4-3}=\dfrac{8}{3}\\y_I=\dfrac{1.1-4.\left(-1\right)-3.3}{1-4-3}=\dfrac{2}{3}\\z_I=\dfrac{1.\left(-1\right)-4.2-3.\left(-2\right)}{1-4-3}=\dfrac{1}{2}\end{matrix}\right.\)
\(\left|\overrightarrow{MA}-4\overrightarrow{MB}-3\overrightarrow{MC}\right|=\left|-6\overrightarrow{MI}\right|=6MI\)
mà \(M\in\left(\alpha\right)\)
\(\Rightarrow\left|\overrightarrow{MA}-4\overrightarrow{MB}-3\overrightarrow{MC}\right|_{min}\) là \(6.d\left(I;\left(\alpha\right)\right)\)
\(MI=d\left(I;\alpha\right)=\dfrac{\left|4.\dfrac{8}{3}+2.\dfrac{2}{3}-\dfrac{1}{2}-12\right|}{\sqrt{4^2+2^2+\left(-1\right)^2}}=\dfrac{\dfrac{1}{2}}{\sqrt{21}}=\dfrac{1}{2\sqrt{21}}\)
\(\left|\overrightarrow{MA}-4\overrightarrow{MB}-3\overrightarrow{MC}\right|_{min}=6.\dfrac{1}{2\sqrt{21}}=\dfrac{3}{\sqrt{21}}\RightarrowĐúng\)