HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
3) \(M^2=\dfrac{x^2}{4}-\dfrac{x}{6}+1\)
Tính Min của biểu thức vừa lập.Xong dễ dàng tìm MinM (khai căn )
Điều kiện \(x>0\)
\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}}-16\sqrt{x}\)
\(P=1-\dfrac{1}{\sqrt{x}}-16\sqrt{x}\)
\(P=1-\left(\dfrac{1}{\sqrt{x}}+16\sqrt{x}\right)\)
Áp dụng BĐT Cauchy cho 2 số dương
\(\dfrac{1}{\sqrt{x}}+16\sqrt{x}\), ta có:
\(\dfrac{1}{\sqrt{x}}+16\sqrt{x}\ge2\sqrt{\dfrac{1}{\sqrt{x}}.16\sqrt{x}}=8\)
\(P\ge1-8=-7\)
Vậy MinP=-7 khi x=1/16
(2x - 5)2008 + (3y + 4)2010 \(\le\) 0
Mà (2x - 5)2008 \(\ge\) 0 ; (3y + 4)2010 \(\ge\) 0
Nên (2x - 5)2008 = (3y + 4)2010 = 0
=> 2x - 5 = 0 => 2x = 5 ; x = 5/2
=> 3y + 4 = 0 => 3y = -4 ; y = -4/3
Vậy x = 5/2 ; y =-4/3
Hàm số xác định \(\forall x\in R\)
Gọi yo là 1 giá trị của hàm số. Ta có:
\(y_o=\dfrac{x^2-x+1}{x^2+x+1}\)
\(\Rightarrow\left(y_o-1\right)x^2+\left(y_o+1\right)x+\left(y_o-1\right)=0\left(1\right)\)
a. Nếu yo=1:
\(\left(1\right)\Rightarrow2x=0\Leftrightarrow x=0\)
b.Nếu yo\(\ne1\)
Ta có: \(\Delta=\left(y_o+1\right)^2-4\left(y_o-1\right)^2\ge0\)
\(\Leftrightarrow-3y_o^2+10y_o-3\ge0\)
\(\Leftrightarrow\left(-3y_o+1\right)\left(y_o-3\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{3}\le y_o\le3\)
Vậy MinA=1/3 khi x=1
MaxA=3 khi x=-1
So bad!!!
Để P(x) không xác định thì 9x2-6x+1=0
Ta có: 9x2-6x+1=0
<=>(3x)2-2.3x.1+12=0
<=>(3x-1)2=0
<=>3x-1=0
<=>x=1/3
Vậy: x=1/3 thì P(x) không xác định
Bạn vào câu hỏi tương tự nha !!! Tích nhé !