(2x - 5)2008 + (3y + 4)2010 \(\le\) 0
Mà (2x - 5)2008 \(\ge\) 0 ; (3y + 4)2010 \(\ge\) 0
Nên (2x - 5)2008 = (3y + 4)2010 = 0
=> 2x - 5 = 0 => 2x = 5 ; x = 5/2
=> 3y + 4 = 0 => 3y = -4 ; y = -4/3
Vậy x = 5/2 ; y =-4/3
Ta có: (2x-5)^2008>=0(với mọi x)
(3y+4)^2010>=0(với mọi y)
=>(2x-5)^2008+(3y+4)^2010>=0(với mọi x,y)
mà theo đề, (2x-5)^2008+(3y+4)^2010<=0
nên (2x-5)^2008+(3y+4)^2010=0
=>(2x-5)^2008=0 và (3x+4)^2010=0
2x-5=0 3x+4=0
2x=0+5 3x=0-4
x=5/2 x=4/3
Vậy x=5/2; y=4/3
Ta thấy: \(\left(2x-5\right)^{2008}=\left(\left(2x-5\right)^{1004}\right)^2\ge0\)
\(\left(3y+4\right)^{2010}=\left(\left(3y+4\right)^{1005}\right)^2\ge0\)
=>\(\left(2x-5\right)^{2008}+\left(3y+4\right)^{2010}\ge0\)
mà \(\left(2x-5\right)^{2008}+\left(3y+4\right)^{2010}\le0\)
=>\(\left(2x-5\right)^{2008}+\left(3y+4\right)^{2010}=0\)
Khi đó: \(\left(2x-5\right)^{2008}=0=>2x-5=0=>2x=5=>x=\frac{5}{2}\)
\(\left(3y+4\right)^{2010}=0=>3y+4=0=>3y=-4=>y=-\frac{4}{3}\)
Vậy \(x=\frac{5}{2},y=-\frac{4}{3}\)