2, Chứng minh các đa thức sau luôn luôn dương với mọi x, y :
a, x2 + 2x + 2
= x2 + 2x +1 +1
= (x+1)2 +1
Vì (x+1)2 \(\ge\) 0 , \(\forall\) x
nên (x+1)2 +1 \(\ge\) 1 > 0 , \(\forall\) x
b, 4x2 - 12x + 11
= (2x)2 - 2.2x.3 + 9 +2
= (2x - 3)2 +2
Vì (2x - 3)2 \(\ge\)0, \(\forall\)x
nên (2x - 3)2 +2 \(\ge\)2 >0 , \(\forall\) x
c, x2 - x + 1
= x2 - 2.x . \(\dfrac{1}{2}\) +\(\dfrac{1}{4}\)+ \(\dfrac{3}{4}\)
= (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\)
Vì (x - \(\dfrac{1}{2}\))2 \(\ge\) 0, \(\forall\) x
nên (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{3}{4}\) \(\ge\)0, \(\forall\) x
d, x2 - 2x + y2 + 4y + 6
= (x2 - 2x + 1)+ (y2 + 4y + 4) +1
= (x-1)2 + (y+2)2 +1
Vì (x-1)2 \(\ge\) 0, \(\forall\) x
(y+2)2 \(\ge\)0, \(\forall\) y
nên (x-1)2 + (y+2)2 +1 \(\ge\)1 >0, \(\forall\) x, y