T giải = pp giá trị riêng nhé :v
Gọi đa thức thương của phép chia là đa thức Q(x)
f(x) = x4 - 3x3 + bx2 + ax + b = (x2 - 1) . Q(x)
= (x - 1) (x +1) . Q(x)
* Tại x = 1 Ta có :
12 - 3.13 + b.12 + a.1 + b = 0
1 - 3 + b +a +b = 0
-2 +2b +a = 0
2b+a = 2
2b = 2 - a (1)
* Tại x = -1 Ta có :
(-1)2 - 3. (-1)2 + b.(-1)2 + a. (-1) +b = 0
1 + 3 +b -a+b =0
4 +2b -a = 0
2b -a = -4
2b = -4 +a (2)
Từ (1) và (2) => 2 - a = -4 +a
2 +4 = a+a
2a = 6
=> a = 3
Từ (1) => 2b = 2 -a = 2 - 3 = -1 <=> b = \(\dfrac{-1}{2}\)
Vậy a = 3 ; b = \(\dfrac{-1}{2}\)