HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giải:
Gọi số đơn vị phải thêm là \(a\)
Theo đề bài ta có: \(\dfrac{65+a}{135+a}=\dfrac{3}{5}\)
\(\Leftrightarrow5\left(a+65\right)=3\left(a+135\right)\)
\(\Leftrightarrow5a+325=3a+405\)
\(\Leftrightarrow5a-3a=405-325\)
\(\Leftrightarrow2a=80\Rightarrow a=\dfrac{80}{2}=40\)
Vậy số đơn vị cần thêm là \(40\)
Dễ thấy:
\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)
\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)
\(......................\)
\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)
Cộng vế theo vế ta có:
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=1\)
Vậy \(S>1\) (Đpcm)
Ta có: \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2014.2015.2016}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2014.2015.2016}\right)\)
\(=\dfrac{1}{2}\)\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}-\dfrac{1}{2015.2016}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)\)
\(=\dfrac{1}{2}.\dfrac{1}{1.2}-\dfrac{1}{2}.\dfrac{1}{2015.2016}=\dfrac{1}{4}-\) \(\dfrac{1}{2.2015.2016}\)
Mà \(\dfrac{1}{2.2015.2016}>0\Leftrightarrow\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)
Vậy \(A< \dfrac{1}{4}\)
Ta có:
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\Leftrightarrow x=\dfrac{23}{45}\div\dfrac{11}{45}=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\)
\(.....................\)
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)
Coi giá bán ngày thường là \(100\%\) thì giá bán ngày \(1-6\) là:
\(100\%-10\%=90\%\)
Cửa hàng vẫn còn lãi \(8\%\) tức là cửa hàng bán được:
\(100\%+8\%=108\%\) (giá mua)
Số tiến lãi tính theo giá mua là:
\(100\div90\times108=120\%\) (giá mua)
Vậy ngày thường thì cửa hàng lãi được:
\(120\%-100\%=20\%\)
Đáp số: \(20\%\)
Sửa đề: thì \(ay-bx=0\)
Xét hiệu: \(\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2\) \(-2axby\)
\(=a^2y^2-2axby+b^2x^2\)
\(=\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\) (Đpcm)
Xét hiệu \(A=\left(a^2+b^2+1\right)-\left(ab+a+b\right)\)
\(=a^2+b^2+1-ab-a-b\)
\(\Rightarrow2A=2a^2+2b^2+2-2ab-2a-2b\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)\) \(+\left(b^2-2b+1\right)\)
\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow2A\ge0\Leftrightarrow A\ge0\)
Vậy \(a^2+b^2+1\ge ab+a+b\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)