HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Bạn tìm ở
http://vinhphuc.edu.vn/UserFiles/HEAD862/news/attachment/53570/53570_1415690645_PP_Giai_bai_tap_tich_vo_huong_HH_10-www.MATHVN.com.pdf
ta có: \(a=\frac{2b^2}{1+b^2}\le\frac{2b^2}{2b}=b\)(bđt cô shi)→\(a\le b\)
do đó \(b=\frac{2c^2}{1+c^2}\le c\);\(c=\frac{2a^2}{1+a^2}\le a\)(bđt cô shi)
→\(a\le b;b\le c;c\le a\)→chỉ xảy ra khi a=b=c
dễ thấy ngoài a=b=c=1 thì bt thỏa mãn với tất cả các số thực với dk a=b=c
a) So so hang la:
(2000-10):2+1=996
Tong cac so tren la:
(2000+10)x996:2=1000980
b) so so hang la:
(9999-21):2+1=4990
(9999+21)x4990:2=2499900
c) So so hang la:
(995-5):5+1=199
(995+5)x199:2=99500
d) So so hang la:
(3060-100):1+1=2961
(3060+100)x2961:2=4678380
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100Theo Đi-rich-lê ta có trong 51 số đã giả sử ở trên luôn tồn tại 2 số mà số dư của chúng khi chia cho 100 cùng rơi vào 1 cặp trong 50 cặp ở trên => tổng của chúng chia hết cho 100 => dpcm
có đúng k?
\(x^3\left(x^2-7\right)^2-36x=x^3\left(x^4-14x^2+49\right)-36x\)
=\(x^7-14x^5+49x^3-36x\)
=\(x^7-x^6+x^6-x^5-13x^5+13x^4-13x^4+13x^3+36x^3-36x\)
=\(x^6\left(x-1\right)+x^5\left(x-1\right)-13x^4\left(x-1\right)-13x^3\left(x-1\right)+36x\left(x^2-1\right)\)
=\(x\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)\)
=\(x\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]\)
=\(x\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)\)
đặt x^2 =a (a>=0) thì xét đa thức \(x^4-13x^2+36=a^2-13a+36\)
xét \(\Delta=b^2-4ac=169-4.36=25\)
\(\Delta>0\)→phương trình có 2 nghiệm riêng biệt là \(\left[\begin{array}{nghiempt}a_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{13+5}{2}=9\\a_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{13-5}{2}=4\end{array}\right.\)(t/m a>=0)
vậy bt ban đầu :\(x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)\left(x^2-9\right)\)
=\(\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
áp dụng BĐT buniacopxki,ta có:\(\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
↔\(1\le\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
Đặt x2+y2=a(a>=0),ta có:\(1\le a\left(2-a\right)\)↔a2-2a+1\(\ge\)0 hay\(\left(a-1\right)^2\ge0\)
dấu = xảy ra khi a=1 do đó x2+y2=1
ta có:\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{n}}\)
→\(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)(n hạng tử \(\frac{1}{\sqrt{n}}\))
→\(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{n}{\sqrt{n}}=\sqrt{n}\)
Tìm số thực a để hình phẳng giới hạn bởi hai đồ thị hàm y = x 2 + 2 ax + 3 a 2 1 + a 6 và y = a 2 - ax 1 + a 2 có diện tích lớn nhất.
A. .
B. 1.
C. 2.
D. .