a) \(\sqrt{x-\frac{1}{x}}+\sqrt{x-\frac{1}{x}}=x\left(ĐK:x\ge1\right)\)
Đặt: \(\sqrt{x-\frac{1}{x}}=a\left(a\ge0\right);\sqrt{1-\frac{1}{x}}=b\left(b\ge0\right)\)
Ta có: \(a+b=x\Rightarrow b=x-a\)
Lại có: \(a^2-b^2=x-\frac{1}{x}-1+\frac{1}{x}\)
\(\Leftrightarrow a^2-b^2=x-1\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=x-1\)
\(\Leftrightarrow\left(a-b\right)x=x-1\)
\(\Leftrightarrow a-b=\frac{x-1}{x}=1-\frac{1}{x}\)
\(\Leftrightarrow a-x+a=1-\frac{1}{x}\)
\(\Leftrightarrow2a=1+x-\frac{1}{x}\)
\(\Leftrightarrow2x=1+a^2\)
\(\Leftrightarrow\left(a-1\right)^2=0\Leftrightarrow a-1=0\Leftrightarrow a=1\)
Với \(a=1\) , ta có:
\(\sqrt{x-\frac{1}{x}}=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\)
\(\Leftrightarrow x^2-1=x\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\sqrt{5}+1}{2}\cdot\left(tm\right)\\x=\frac{-\sqrt{5}+1}{2}\left(ktm\right)\end{array}\right.\)
Vậy \(x=\frac{\sqrt{5}+1}{2}\) là nghiệm của pt đã cho
b) \(7\sqrt{x^3-1}=2x^2+5x-1\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=2\left(x^2+x+1\right)+3\left(x-1\right)\)
Đặt: \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{x^2+x+1}=b\left(b\ge0\right)\)
Khi đó ta có: \(7ab=2b^2+3a^2\)
\(\Leftrightarrow\left(3a^2-6ab\right)-\left(ab-2b^2\right)=0\)
\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a-2b=0\\3a-b=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}a=2b\\3a=b\end{array}\right.\)
Với: \(a=2b\), ta có:
\(\sqrt{x-1}=2\sqrt{x^2+x+1}\)
\(\Leftrightarrow x-1=4\left(x^2+x+1\right)\)
\(\Leftrightarrow4x^2+4x+4=x-1\)
\(\Leftrightarrow4x^2+3x+5=0\) (vô nghiệm)
Với: \(3a=b\)
\(\Leftrightarrow3\sqrt{x-1}=\sqrt{x^2+x+1}\)
\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)
\(\Leftrightarrow9x-9=x^2+x+1\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow\left(x-4\right)^2=6\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=\sqrt{6}\\x-4=-\sqrt{6}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4+\sqrt{6}\left(tm\right)\\x=4-\sqrt{6}\left(ktm\right)\end{array}\right.\)
Vậy \(x=4+\sqrt{6}\) là nghiệm của pt đã cho