HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : \(S_{ABC}=\dfrac{AB\cdot AC\cdot BC}{4R}\)
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : Nếu AD+BC=BE+AC=CF+AB thì tam giác ABC đều.
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. Giả sử B, C cố định. Xác định A trên cung BC để HA+HB+HC đạt GTLN.
Cho tam giác ABC nội tiếp (O;R) có BC=2R và AB < AC. Tiếp tuyến tại B, C của (O) cắt tiếp tuyến tại A lần lượt tại D, E. F là trung điểm của DE. M là giao của FC với (O). CMR : \(\widehat{CED}=2\widehat{AMB}\) và tính MC.BF theo R.
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Cho nửa (O;R) , đường kính AB, OK vuông góc với AB. Trên cung KB lấy M. Trên tia AM lấy N sao cho AN=MB. Kẻ dây BP song song với KM . AP cắt BM tại Q. E là giao của BP và AM. CMR : AM.BE=AN.AQ
Cho x, y, z > 0 và x+y+z=1. Tìm MIN của :
P= \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)