HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tính tử: \(51.125-51.42-17.150\)
\(=51.125-51.42-17.3.50\)
\(=51.125-51.42-51.50\)
\(=51.\left(125-42-50\right)=51.33\)
Tính mẫu:
Số các số hạng: \(\left(99-3\right):3+1=33\)
Mẫu = \(33.\left(\dfrac{99+3}{2}\right)=33.51\)
\(B=1\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\dfrac{\left[\left(x+1\right)+\left(x+99\right)\right].50}{2}=0\)
\(\left(x+50\right).50=0\)
\(x+50=0\)
\(x=-50\)
chữ xấu (thông cảm) ;-;
Ta có \(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2021}\left(1\right)\)
\(\Rightarrow\dfrac{3}{2}A=\dfrac{3}{4}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2013}\left(2\right)\)
Lấy (2) - (1) ta được:
\(\dfrac{3}{2}A-A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{3}{2}\)
\(\dfrac{1}{2}A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{1}{4}\Rightarrow A=\dfrac{3^{2013}}{2^{2012}}+\dfrac{1}{2}\)
Vậy \(B-A=\dfrac{3^{2013}}{2^{2014}}-\dfrac{3^{2013}}{2^{2012}}+\dfrac{5}{2}\)
\(1,25:\dfrac{15}{20}+\left(25\%-\dfrac{5}{6}\right):4\dfrac{2}{3}\)
\(=\dfrac{5}{4}.\dfrac{4}{3}+\left(\dfrac{1}{4}-\dfrac{5}{6}\right).\dfrac{3}{14}\)
\(=\dfrac{5}{3}+\dfrac{7}{12}.\dfrac{3}{14}\)
\(=\dfrac{5}{3}+-\dfrac{1}{8}\)
\(=\dfrac{37}{24}\)
1. need
2. won't be
3. will buy
4. will write
5. will go
\(\dfrac{13}{x-15}\) là số nguyên khi \(x-15\) là ước của 13
\(x-15\in\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{16;14;26;2\right\}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Do đó: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
\(\Rightarrow A>B\)