a)Vì \(\dfrac{n^4-n^2-1}{n+1}=\dfrac{n^2\left(n^2-1\right)-1}{n+1}=\dfrac{n^2\left(n-1\right)\left(n+1\right)-1}{n+1}=n^2\left(n-1\right)-\dfrac{1}{n+1}\)là số nguyên => \(\dfrac{1}{n+1}\) là số nguyên => \(n+1\in\left\{1,-1\right\}\) => \(n\in\left\{0.-2\right\}\) (thỏa mãn)
b)Vì \(\dfrac{n^3+2n-1}{n-2}=\dfrac{n^3-2n^2+2n^2-4n+6n-12+11}{n-2}=\dfrac{\left(n-2\right)\left(n^2+2n+6\right)+11}{n-2}=n^2+2n+6+\dfrac{11}{n-2}\)
là số nguyên => \(\dfrac{11}{n-2}\) là số nguyên => \(n-2\in\left\{-11,-1,1,11\right\}\) => \(n\in\left\{-9,1,3,13\right\}\) (thỏa mãn)
c)Vì \(\dfrac{n^2+2n+1}{n-3}=\dfrac{n^2-3n+5n-15+16}{n-3}=\dfrac{\left(n-3\right)\left(n+5\right)+16}{n-3}=n+5+\dfrac{16}{n-3}\)
là số nguyên => \(\dfrac{16}{n-3}\) là số nguyên => \(n-3\in\left\{-16,-8,-4,-2,-1,1,2,4,8,16\right\}\) => \(n\in\left\{-13,-5,-1,1,2,4,5,7,11,19\right\}\)
Vậy...