Chứng minh rằng :
Nếu (a2- bc)(b - abc) = (b2 - ac)(a - abc) và các số a,b,c; a-b#0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Chứng minh rằng :
Nếu (a2- bc)(b - abc) = (b2 - ac)(a - abc) và các số a,b,c; a-b#0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Có :
\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=abc^2\left(a-b\right)+abc\left(a^2-b^2\right)\)
\(\Leftrightarrow a^2b-a^3bc-b^2c+ab^2c^2=ab^2-ab^3c-a^2c+a^2bc^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=abc^2\left(a-b\right)+abc\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=abc\left(a-b\right)\left(a+b+c\right)\)
Chia 2 vế cho abc(a-b) khác 0 ta được :
\(\left(ab+ac+bc\right):abc=a+b+c\)
\(\Leftrightarrow\dfrac{ab}{abc}+\dfrac{bc}{abc}+\dfrac{ac}{abc}=a+b+c\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\left(đpcm\right)\)
Cho biểu thức \(A=\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{1}{z^2}\right)\left(\dfrac{y^2+z^2}{y^2z^2}-\dfrac{1}{x^2}\right)\left(\dfrac{z^2+x^2}{z^2x^2}-\dfrac{1}{y^2}\right)\)
Trong đó \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) .Chứng minh A luôn có giá trị âm với mọi x,y,z#0
Tính nhanh :\(\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}\)* \(\dfrac{x}{2x+3}\)* \(\dfrac{x^4-7x^2+2}{3x^5+5x^3+1}\)
\(\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{x}{2x+3}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\) ( sửa đề )
\(=\left[\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\right].\dfrac{x}{2x+3}\)
\(=\dfrac{x}{2x+3}\)
một bình thủy tinh cao 1,2 m được chứa đầy nước
a) tính áp suất do nước lên điểm a của đáy bình cho trọng lượng riêng của nước bằng 10000 N/m3
b) tính áp suất của nước tác dụng lên điểm b cách đáy bình 0,65 m
☠ giúp mk vs mk cần gấp lắm...
Tóm tắt:
h = 1,2m
d = 10000 N/m3
hb = 1,2m - 0,65m = 0,55m
a) pa = ?
b) pb = ?
Giải
a) Áp suất của nước tác dụng lên điểm a ở đáy bình:
\(p_a=d.h=10000.1,2=12000\) N/m2
b) Áp suất của nước tác dụng lên điểm b cách đáy bình 0,65m:
\(p_b=d.h=10000.0,55=5500\) N/m2
Đáp số: a) pa = 12000 N/m2
b) pb = 5500 N/m2.
Bài 1: Cho biểu thức: B= (\(\dfrac{16x-x^2}{x^2-4}+\dfrac{3+2x}{2-x}+\dfrac{3x-2}{x+2}\)) . \(\dfrac{x^2+4x+4}{x-1}\)
a) Rút gọn B
b) Tìm x để B=0
c) Tìm giá trị nguyên của x để B có giá trị nguyên
mn giúp mk vs, mk cần nhanh gấp!!!!
Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
a) Tìm điều kiện xác định A và rút gọc A
b) Tìm x để A = -2
c) Tìm giá trị nhỏ nhất của A
Cho \(a,b,c\ne0\)thỏa mãn
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)= 1
Tính Q = \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right).\left(a+b+c\right)=1.\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{a+c}+\dfrac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left( a+b\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b^2}{a+c}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c^2}{a+b}+\dfrac{c\left(a+b\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=a+b+c-a-b-c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)
Cho \(\dfrac{x}{a}\) + \(\dfrac{y}{b}\) + \(\dfrac{z}{c}\) = 1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Tính A = \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1^2\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(ayz+bxz+cxy=0\right)\)
Tính:
\([\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2y^2}]\cdot\dfrac{2y}{x^3-y^3}\)
Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
a) Tìm điều kiện xác định của A và rút gọn A
b) Tìm x để A = -2
c) Tìm giá trị nhỏ nhất của A
a,\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right].\dfrac{x^2-2x+1}{2}\)
A xác định \(\Leftrightarrow x-1\ne0\)
\(\Leftrightarrow x\ne1\)
Rút gọn:
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\dfrac{x+2}{1}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\dfrac{\left(x+2\right)\left(x-1\right)}{x-1}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left(\dfrac{x^2-x-2-x^2-x+2}{x-1}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(A=\dfrac{-2}{x-1}.\dfrac{\left(x-1\right)^2}{2}\)
\(A=\dfrac{-2.\left(x-1\right)^2}{\left(x-1\right).2}\)
\(A=-x+1\)
b,\(A=-2\Leftrightarrow-x+1=-2\)
\(\Leftrightarrow-x=-3\)
\(\Leftrightarrow x=3\)