Có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right).\left(a+b+c\right)=1.\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{a+c}+\dfrac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left( a+b\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b^2}{a+c}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c^2}{a+b}+\dfrac{c\left(a+b\right)}{a+b}=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=a+b+c-a-b-c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)