Trong không gian với hệ tọa độ Oxyz, cho A(1;0;1) và B(-1;-3) và mặt phẳng \(\left(\alpha\right):x+2y+3z+3=0\), lập phương trình đường thẳng\(\left(\beta\right)\) đi qua 2 điểm A, B và vuông góc với mặt phẳng \(\left(\alpha\right)\)
Trong không gian với hệ tọa độ Oxyz, cho A(1;0;1) và B(-1;-3) và mặt phẳng \(\left(\alpha\right):x+2y+3z+3=0\), lập phương trình đường thẳng\(\left(\beta\right)\) đi qua 2 điểm A, B và vuông góc với mặt phẳng \(\left(\alpha\right)\)
\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)
Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)
Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)
Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)
\(\Leftrightarrow\left(x-y\right)^2\le4\)
Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt AB tại E, tia phân giác của góc AMC cắt AC tại D.
a)So sánh AE/EB và AD/DC
b)Gọi I là giao điểm của AM và ED. Chứng minh I là trung điểm ED.
c)Cho BC = 16 cm, CD/DA = 3/5. Tính ED
d)Gọi F, K lần lượt là giao điểm EC với AM, DM. Chứng minh EF.KC = FK.EC
a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED
Cho chóp SABCD , ABCD là hình thoi tâm O ,2 tam giác SAB và SAC vuông tại A , SA=a AC=\(2a\sqrt{3}\) . c/m AH vuông góc vs (SBC). H là đường cao...
mọi ngưới giúp mk vs!!!
giải thích vì sao các đồ vật có 4 chân như bàn , ghế ,... thường bị cập kênh ?
với 1 cái thước thẳng , làm thế nào để phát hiện 1 mặt bàn có phẳng hay không ? nói rõ căn cứ vào đâu mà ta làm như vậy .
cho 2 mặt phẳng (P) và (Q) cắt nhau theo giao tuyến \(\Delta\) . Trên (P) cho đường thẳng a và trên (Q) cho đường thẳng b . Chứng minh rằng nếu đường thẳng a và b cắt nhau thì giao điểm phải nằm trên \(\Delta\)
cho mặt phẳng (P) và 3 điểm không thẳng hàng A , B , C cùng nằm ngoài (P) . chứng minh rằng nếu 3 đoạn thẳng AB , AC , BC đều cắt mặt phẳng (P) thì các giao điểm đó thẳng hàng .
cho 3 đường thẳng a , b , c không cùng nằm trên 1 mặt phẳng sao cho chúng đôi một cắt nhau . chứng minh rằng chúng đồng quy .
cho 2 đường thẳng a và b cắt nhau tại điểm O và đường thẳng c cắt mặt phẳng(a , b) tại điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M , a) , (M , b) nằm trên 1 mặt phẳng cố định .
cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .