§1. Đại cương về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Phương Thanh
Xem chi tiết
Nguyễn Trọng Nghĩa
7 tháng 5 2016 lúc 15:35

Phương trình đã cho tương đương : 

                            \(x^2-3x+2+2^x\left(x-2\right)=0\)

\(\left(x-1\right)\left(x-2\right)+2^x\left(x-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\2^x+x-1=0\end{array}\right.\)

Xét hàm số : \(f\left(x\right)=2^x+x-1;f'\left(x\right)=2^x\ln2+1>0,x\in R\)

Vậy \(f\left(x\right)\) đồng biến trên R. Lại có \(f\left(0\right)=0\) nên phương trình \(f\left(x\right)=0\) có nghiệm duy nhất \(x=0\)

Vậy phương trình có 2 nghiệm \(x=0;x=2\)

Đỗ Đức Huy
Xem chi tiết
Nguyễn Trọng Nghĩa
7 tháng 5 2016 lúc 15:30

\(\Leftrightarrow2^{\cos2x-1}\left(2\cos x-1\right)=2\cos^2x\left(2\cos x-1\right)\)

\(\Leftrightarrow\left(2\cos x-1\right)\left(2^{\cos2x}-2\cos^2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\cos x=\frac{1}{2}\\2^{\cos2x}=\cos2x+1\end{array}\right.\)

* Với \(\cos x=\frac{1}{2}\) ta có \(x=\frac{\pi}{3}=k2\pi,k\in Z\)

* Với \(2^{\cos2x}=\cos2x+1\) (*), đặt \(t=\cos2x;t\in\left[-1;1\right]\)

Phương trình trở thành \(2^t-t-1=0\)

Xét hàm số \(f\left(t\right)=2^t-t-1,t\in\left[-1;1\right]\)

Có \(f'\left(t\right)=2^t\ln2-1,t\in\left[-1;1\right];f'\left(t\right)=0\) có đúng 1 nghiệm  nên phương trình \(f\left(t\right)=0\) có tối đa 2 nghiệm. Mà \(f\left(0\right)=f\left(1\right)=0\) nên \(t=0;t=1\) là tất cả các nghiệm của phương trình \(f\left(t\right)=0\)

Do đó phương trình (*) \(\Leftrightarrow\left[\begin{array}{nghiempt}\cos2x=0\\\cos2x=1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{4}+k\frac{\pi}{2}\\x=k\pi\end{array}\right.\) \(k\in Z\)

Vậy phương trình đã cho có 3 nghiệm là :

\(x=\frac{\pi}{3}+k2\pi;x=\frac{\pi}{4}+k\frac{\pi}{2};x=k\pi;k\in Z\)

Đào Thị Hương Lý
Xem chi tiết
Trần Khánh Vân
7 tháng 5 2016 lúc 16:14

Phương trình đã cho tương đương với : 

\(\left(2^{2^x}-2^{x+1}\right)+\left(3^{2^x}-3^{x+1}\right)=x+1-2^x\)

Ta xét các trường hợp sau :

* Nếu \(2^x>x+1\) thì \(2^{2^x}-2^{x+1}>0;3^{2^x}-3^{x+1}>0;x+1-2^x< 0\) nên phương trình đã cho không thỏa mãn.

* Nếu \(2^x< x+1\) thì \(2^{2^x}-2^{x+1}< 0;3^{2^x}-3^{x+1}< 0;x+1-2^x>0\) nên phương trình đã cho không thỏa mãn.

* Nếu \(2^x=x+1\) thì phương trình đã cho thỏa mãn và khi đó nghiệm của nó cũng là nghiệm của \(2^x=x+1\)

Xét hàm số \(f\left(t\right)=2^t-\left(t+1\right)\) ta thấy \(f'\left(t\right)=2^t.\ln2-1;f"\left(t\right)=2^t\left(\ln2\right)^2>0\) nên phương trình  có không quá 2 nghiệm phân biệt

Ta lại thấy \(f\left(0\right)=f\left(1\right)=0\) nên phương trình \(f\left(t\right)=0\) có đúng 2 nghiệm là 0 và 1

Vậy phương trình đã cho có 2 nghiệm là \(x=0;x=1\)

Phan Nhật Linh
Xem chi tiết
Đặng Minh Quân
9 tháng 5 2016 lúc 11:02

\(\Leftrightarrow7.2^x=13.3^x\Leftrightarrow\left(\frac{3}{2}\right)^x=\frac{7}{13}\Leftrightarrow x=\log_{\frac{3}{2}}\frac{7}{13}\)

Ngô Thanh Hoài
Xem chi tiết
Đặng Minh Triều
9 tháng 5 2016 lúc 13:05

Đặt t=\(x+\frac{5+3}{2}=x+4\)

PT trên trở thành:

(t+1)4+(t-1)4=16

<=>2t4+12t2+2=16

<=>2t4+12t2-14=0(1)

Đặt y=t2(y\(\ge\) 0)=> PT(1) trở thành: 2y2+12y-14=0(2)

Ta có: a+b+c=2+12-14=0

=>PT(2) có 2 nghiệm phân biệt: \(y_1=1\left(nhận\right);y_2=-7\left(loại\right)\)

y=1 =>t2=1 =>t=1 hoặc t=-1

Với t=1 =>x=-3 

Với t=-1 =>x=-5

Vậy S={-3;-5}

Thiên An
9 tháng 5 2016 lúc 11:38

Đặt \(t=x+4\), phương trình ban đầu trở thành :

\(\left(t+1\right)^4+\left(t-1\right)^4=16\Leftrightarrow t^4+6t^2-7=0\)

                                     \(\Leftrightarrow\left[\begin{array}{nghiempt}t^2=1\\t^2=-7\end{array}\right.\)

Phương trình \(t^2=-7\) vô nghiệm

Phương trình \(t^2=1\) cho ta 2 nghiệm \(t=1;t=-1\) do đó :

Phương trình ban đầu \(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=-1\\x+4=1\end{array}\right.\)

                                 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-3\end{array}\right.\)

Huỳnh Thị Đông Thi
Xem chi tiết
Đỗ Hạnh Quyên
9 tháng 5 2016 lúc 12:39

Dễ thấy \(x=0\) không là nghiệm của phương trình. Ta có "

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\left(x^2+7x+6\right)\left(x^2+5x+6\right)=168x^2\)

                                                          \(\Leftrightarrow\left(x+\frac{6}{x}+7\right)\left(x+\frac{6}{x}+5\right)=168\)

Đặt \(t=x+\frac{6}{x}\) ta được :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\left(t+7\right)\left(t+5\right)=168\)

                                                          \(\Leftrightarrow t^2+12t-133=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\\t=-19\end{array}\right.\)

Do vậy :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\begin{cases}x+\frac{6}{x}=7\\x+\frac{6}{x}=-19\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x^2-7x+6=0\\x^2+19x+6=0\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x=1\\x=6\\x=\frac{-19\pm\sqrt{337}}{2}\end{cases}\)

Vậy phương trình đã cho có tập nghiệm :

\(\left\{1;6;\frac{-19-\sqrt{337}}{2};\frac{-19+\sqrt{337}}{2}\right\}\)

 

 

Đặng Minh Triều
9 tháng 5 2016 lúc 12:53

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\)

<=>\(\left(x+1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=168x^2\)

<=>\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=168x^2\)(1)

Đặt t=x2+5x+6

PT (1) trở thành: (t+2x)t=168x2

<=>t2+2tx-168x2=0

<=>t2-12tx+14tx-168x2=0

<=>t.(t-12x)+14x.(t-12x)=0

<=>(t-12x)(t+14x)=0

<=>t-12x=0 hoặc t+14x=0

*t-12x=0 (thích giải denta cũng được)

<=>x2-7x+6=0

<=>x2-x-6x+6=0

<=>x.(x-1)-6.(x-1)=0

<=>(x-1)(x-6)=0

<=>x=1 hoặc x=6

*t+14x=0

<=>x2+19x+6=0

Giải denta là vừa tại số lớn lắm tự làm típ ..............

PhỤng RòM
Xem chi tiết
ngô thừa ân
Xem chi tiết
Phương An
13 tháng 5 2016 lúc 12:26

nốt cao hơn nốt đố là nốt rế.

Chúc bạn học tốtok

ncjocsnoev
13 tháng 5 2016 lúc 12:27

Nốt sì nhé

Bùi Nguyễn Nhất Huy
13 tháng 5 2016 lúc 13:14

nốt rế

Nguyễn Huỳnh Đông Anh
Xem chi tiết
Nguyễn Minh Hằng
18 tháng 5 2016 lúc 21:31

Điều kiện \(x\ge0\) khi đó phương trình đã cho :

       \(\Leftrightarrow\left[\left(2x+1\right)+3x\right]\sqrt{2x+1}-\left[3\left(2x+1\right)+x\right]\sqrt{x}=1\) (a)

Đặt \(u=\sqrt{2x+1};v=\sqrt{x}\) thay vào (2) ta được :

\(\left(u^2+3v^2\right)u-\left(3u^2+v^2\right)v=1\)

\(\Leftrightarrow u^3-3u^2v+3uv^2-v^3=1\)

\(\Leftrightarrow\left(u-v\right)^3=1\)

\(\Leftrightarrow u-v=1\)

\(\Leftrightarrow u=v+1\)

Vậy :

\(\sqrt{2x+1}=\sqrt{x}+1\)

\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}=x\)

\(\Leftrightarrow4x=x^2\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\end{array}\right.\) (Thỏa mãn điều kiện)

Đáp số : \(x=0;x=4\)

Nguyễn Thanh Hải
Xem chi tiết
Nguyễn Minh Hằng
18 tháng 5 2016 lúc 21:22

Tập xác định : D=R. Phương trình đã cho tương đương với :

\(\frac{1}{8}\left(4x-4\right)^2-\frac{7}{4}\left(4x-4\right)+12-3\sqrt[3]{4x-4}=0\)  (1)

Đặt \(t=\sqrt[3]{4x-4}\) thay vào phương trình (1) ta có :

\(t^6-14t^3-24t+96=0\)

hay :

\(\left(t-2\right)^2\left(t^4+4t^3+12t^2+18t+24\right)=0\)  (2)

Nếu \(t\le0\) thì \(t^6-14t^3-24t+96>0\)

Nếu t > 0 thì \(t^4+4t^3+12t^2+18t+24>0\)

Do đó (2) <=> \(t=2\Rightarrow x=3\)

Phạm Minh Quang
28 tháng 10 2019 lúc 22:12

@Võ Hồng Phúc

Khách vãng lai đã xóa
Phạm Minh Quang
28 tháng 10 2019 lúc 22:35

@Võ Hồng Phúc

Khách vãng lai đã xóa