Bài 7: Hình bình hành

Bài 43 (Sgk tập 1 - trang 92)

Hướng dẫn giải

Cả ba tứ giác là hình bình hành.

- Tứ giác ABCD là hình bình hành vì có

AB // CD và AB = CD =3 (dấu hiệu nhận biết 3)

- Tứ giác EFGH là hình bình hành vì có

EH // FG và EH = FH = 3 (dấu hiệu nhận biết 3)

- Tứ giác MNPQ là hình bình hành vì có MN = QP và MQ = NP (dấu hiệu nhận biết 2)

(Trả lời bởi Hương Yangg)
Thảo luận (1)

Bài 44 (Sgk tập 1 - trang 92)

Hướng dẫn giải

Bài giải:

Tứ giác BEDF có:

DE // BF ( vì AD // BC)

DE = BF \(\left(DE=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BF\right)\)

Nên BEDF là hình bình hành.

Suy ra BE = DF.

(Trả lời bởi BW_P&A)
Thảo luận (2)

Bài 45 (Sgk tập 1 - trang 92)

Bài 46 (Sgk tập 1 - trang 92)

Hướng dẫn giải

a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bàng nhau nên là hình bình hành theo dấu hiệu nhận biết 5.

b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa).

c) Sai, vì hình thang cân có hai cạnh đối (hai cạnh bên) bằng nhau nhưng nó không phải là hình bình hành.

d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

(Trả lời bởi Hương Yangg)
Thảo luận (2)

Bài 47 (Sgk tập 1 - trang 93)

Hướng dẫn giải

a) Hai tam giác vuông AHD và CKD có:

AD = CB (gt)

= (so le trong)

Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)

Suy ra AH = CK

Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,

b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.

(Trả lời bởi Hương Yangg)
Thảo luận (2)

Bài 48 (Sgk tập 1 - trang 93)

Hướng dẫn giải

A B C D E F G H

Xét \(\Delta ABC\) có:

E là trung điểm AB (gt)

F là trung điểm AC (gt)

=> EF là đường trung bình \(\Delta ABC\) (ĐN đường TB \(\Delta\))

=> EF // AC, \(EF=\dfrac{AC}{2}\) (tính chất đường TB \(\Delta\))

Xét \(\Delta ADC\) có:

H là trung điểm AD

G là trung điểm DC

=> HG là đường trung bình \(\Delta ADC\) (ĐN đường TB \(\Delta\))

=> HG // AC, \(HG=\dfrac{BC}{2}\) (tính chất đường TB \(\Delta\))

Ta có: EF // AC, HG // AC

\(EF=\dfrac{AC}{2},HG=\dfrac{AC}{2}\)

=> EF // HG, EF = HG

Xét tứ giác EFGH có:

EF // HG

EF = HG

=> EFGH là hình bình hành (dhnb)

(Trả lời bởi Đời về cơ bản là buồn......)
Thảo luận (3)

Bài 49 (Sgk tập 1 - trang 93)

Hướng dẫn giải

Ta có hình vẽ: A K B C I D M N

a) Ta có: AK = \(\dfrac{1}{2}\) AB

IC = \(\dfrac{1}{2}\) DC

mà AB = DC (vì ABCD là hình bình hành)

=> AK = IC

=> AK // IC (vì AB // DC)

=> AKCI là hình bình hành

=> AI // KC

b) Xét \(\Delta ABM\) có:

AK = KB (gt)

AM // KN (vì AI // KC)

=> BN = MN (1)

Xét \(\Delta DNC\) có:

DI = IC (gt)

IM // CN (vì AI // KC)

=> DM = MN (2)

từ (1) và (2) => DM = MN =NB

(Trả lời bởi Nguyễn Ngân Hà)
Thảo luận (3)

Bài 73 (Sách bài tập - trang 89)

Bài 74 (Sách bài tập - trang 89)

Bài 75 (Sách bài tập - trang 89)