Xét \(\Delta ABC\) có:
E là trung điểm AB (gt)
F là trung điểm AC (gt)
=> EF là đường trung bình \(\Delta ABC\) (ĐN đường TB \(\Delta\))
=> EF // AC, \(EF=\dfrac{AC}{2}\) (tính chất đường TB \(\Delta\))
Xét \(\Delta ADC\) có:
H là trung điểm AD
G là trung điểm DC
=> HG là đường trung bình \(\Delta ADC\) (ĐN đường TB \(\Delta\))
=> HG // AC, \(HG=\dfrac{BC}{2}\) (tính chất đường TB \(\Delta\))
Ta có: EF // AC, HG // AC
\(EF=\dfrac{AC}{2},HG=\dfrac{AC}{2}\)
=> EF // HG, EF = HG
Xét tứ giác EFGH có:
EF // HG
EF = HG
=> EFGH là hình bình hành (dhnb)
Tứ giác EFGH là hình bình hành.
Cách 1: EB = EA, FB = FC (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
Tương tự HG là đường trung bình của ∆ACD.
Do đó HG // AC
Suy ra EF // HG (1)
Tương tự EH // FG (2)
Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).
Cách 2: EF là đường trung bình của ∆ABC nên EF = 1212AC.
HG là đường trung bình của ∆ACD nên HG = 1212AC.
Suy ra EF = HG
Lại có EF // HG ( chứng minh trên)
Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3).
TỨ giác ABCD có E,F,G,Htheo thứ tự là trung diểm của các cạnh AB,BC,CD,DA.Chứng minh EF//GH,EH//FG