Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

Bài 1 (SGK trang 40)

Hướng dẫn giải

a) Ta có:

- Hàm số y = cos 3x có tập xác định là D = R

- ∀ x ∈ D ⇒ - x ∈ D

- và f(-x) = cos 3(-x) = cos (-3x) = cos(3x) = f(x)

Vậy hàm số y = cos 3x là hàm số chẵn

b)

Ta có:

Hàm số \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ vì:

\(y=tan\left(x+\dfrac{\pi}{5}\right)\) có tập xác định là \(D=R\backslash\left\{\dfrac{3\pi}{10}+k\pi\right\}\).

Mà với mọi x ∈ D, ta không suy ra được -x ∈ D

Chẳng hạn:
Lấy \(x=-\dfrac{3\pi}{10}\in D\). Ta có \(-x=\dfrac{3\pi}{10}\notin D\).
Vậy hàm số \(y\left(x\right)\) có tập xác định không tự đối xứng nên \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ.

 

(Trả lời bởi Lê Thiên Anh)
Thảo luận (2)

Bài 2 (SGK trang 40)

Hướng dẫn giải

Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]

Dựa vào đồ thị hàm số y = sinx

a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:

x=−π2;x=3π2x=−π2;x=3π2

b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:

x ∈ (-π, 0) ∪ (π, 2 π)


(Trả lời bởi Lê Thiên Anh)
Thảo luận (1)

Bài 3 (SGK trang 41)

Hướng dẫn giải

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


(Trả lời bởi Lê Thiên Anh)
Thảo luận (1)

Bài 4 (SGK trang 41)

Hướng dẫn giải

a) Ta có:

sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin⁡(x+1)=23⇔[x+1=arcsin⁡23+k2πx+1=π−arcsin⁡23+k2π⇔[x=−1+arcsin⁡23+k2πx=−1+π−arcsin⁡23+k2π;k∈Z

b) Ta có:

sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos⁡4x2=12⇔cos⁡4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z

c) Ta có:

cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cot⁡x2=33(1)cot⁡x2=−33(2)(1)⇔cot⁡x2=cot⁡π3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cot⁡x2=cot⁡(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z

d) Ta có:

tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z

Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z


(Trả lời bởi Lê Thiên Anh)
Thảo luận (3)

Bài 5 (SGK trang 41)

Hướng dẫn giải

a) 2cos2x - 3cosx + 1 = 0 (1)

Đặt : t = cosx với điều kiện -1 \(\le t\le1\)

(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)

(Trả lời bởi Tuyết Nhi Melody)
Thảo luận (3)

Bài 1 (Sách bài tập trang 36)

Bài 2 (Sách bài tập trang 36)

Bài 3 (Sách bài tập trang 36)

Hướng dẫn giải

a) Hàm số \(y=\sin x\) giảm trên đoạn \(\left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]\) và tăng trên đoạn \(\left[\dfrac{3\pi}{2};2\pi\right]\)

b) \(y=\sin x\) giảm trên \(\left[-\pi;-\dfrac{\pi}{2}\right]\), tăng trên \(\left[-\dfrac{\pi}{2};0\right]\)

c) \(y=\sin x\) tăng trên \(\left[-2\pi;-\dfrac{3\pi}{2}\right]\), giảm trên \(\left[-\dfrac{3\pi}{2};-\pi\right]\)

(Trả lời bởi Nguyen Thuy Hoa)
Thảo luận (1)

Bài 4 (Sách bài tập trang 37)

Hướng dẫn giải

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

(Trả lời bởi Bùi Thị Vân)
Thảo luận (2)

Bài 5 (Sách bài tập trang 37)

Hướng dẫn giải

a) Đồ thị của hàm số \(y=\sin2x+1\) thu được từ đồ thị hàm số \(y=\sin2x\) bằng cách tịnh tiến song song với trục tung lên phía trên một đơn vị

b) Đồ thị hàm số \(y=\cos\left(x-\dfrac{\pi}{6}\right)\) thu được từ đồ thị hàm số \(y=\cos x\) bằng cách tịnh tiến song song với trục hoành sang phải một đoạn bằng \(\dfrac{\pi}{6}\)

(Trả lời bởi Nguyen Thuy Hoa)
Thảo luận (1)