Không giải phương trình, hãy các định các hệ số a, b, c, tính biệt thức \(\Delta\) và xác định số nghiệm của mỗi phương trình sau:
a) \(7x^2-2x+3=0;\) b) \(5x^2+2\sqrt{10}x+2=0;\)
c) \(\dfrac{1}{2}x^2+7x+\dfrac{2}{3}=0;\) d) \(1,7x^2-1,2x-2,1=0.\)
Không giải phương trình, hãy các định các hệ số a, b, c, tính biệt thức \(\Delta\) và xác định số nghiệm của mỗi phương trình sau:
a) \(7x^2-2x+3=0;\) b) \(5x^2+2\sqrt{10}x+2=0;\)
c) \(\dfrac{1}{2}x^2+7x+\dfrac{2}{3}=0;\) d) \(1,7x^2-1,2x-2,1=0.\)
Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:
a) 2x2 - 7x + 3 = 0; b) 6x2 + x + 5 = 0;
c) 6x2 + x - 5 = 0; d) 3x2 + 5x+ 2 = 0;
e) y2 - 8y + 16 = 0 f) 16z2 + 24z + 9 = 0.
Thảo luận (1)Hướng dẫn giảia) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3
∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5
x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)
b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5
∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm
c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5
∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11
x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =
d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2
∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1
X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)
e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16
∆ = (-8)2 – 4 . 1. 16 = 0
y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4
f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9
∆ = 242 – 4 . 16 . 9 = 0
z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)
(Trả lời bởi Quốc Đạt)
Xác định các hệ số a, b, c. Tính biệt thức \(\Delta\) rồi tìm nghiệm của các phương trình :
a) \(2x^2-5x+1=0\)
b) \(4x^2+4x+1=0\)
c) \(5x^2-x+2=0\)
d) \(-3x^2+2x+8=0\)
Thảo luận (1)Hướng dẫn giải
Xác định các hệ số a, b, c rồi giải phương trình :
a) \(2x^2-2\sqrt{2}x+1=0\)
b) \(2x^2-\left(1-2\sqrt{2}\right)x-\sqrt{2}=0\)
c) \(\dfrac{1}{3}x^2-2x-\dfrac{2}{3}=0\)
d) \(3x^2+7,9x+3,36=0\)
Thảo luận (1)Hướng dẫn giải
Giải các phương trình bằng đồ thị.
Cho phương trình :
\(2x^2+x-3=0\)
a) Vẽ các đồ thị của hai hàm số : \(y=2x^2;y=-x+3\) trong cùng một mặt phẳng tọa độ
b) Tìm hoành độ của mỗi giao điểm của hai đồ thị. Hãy giải thích vì sao các hoành độ này đều là nghiệm của phương trình đã cho ?
c) Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu b)
Thảo luận (1)Hướng dẫn giải
Cho phương trình :
\(\dfrac{1}{2}x^2-2x+1=0\)
a) Vẽ đồ thị của hai hàm số \(y=\dfrac{1}{2}x^2\) và \(y=2x-1\) trên cùng một mặt phẳng tọa độ. Dùng đồ thị tìm giá trị gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai)
b) Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu a)
Thảo luận (1)Hướng dẫn giảia)
b) \(\dfrac{1}{2}x^2-2x+1=0\Leftrightarrow x^2-4x+2=0\)
\(\Leftrightarrow x_1=2-\sqrt{2}\approx0,59\) \(x_2=2+\sqrt{2}\approx3,41\)
(Trả lời bởi Nguyen Thuy Hoa)
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép :
a) \(mx^2-2\left(m-1\right)x+2=0\)
b) \(3x^2+\left(m+1\right)x+4=0\)
Thảo luận (1)Hướng dẫn giải
Đối với mỗi phương trình sau, hãy tìm các giá trị của m để phương trình có nghiệm; tính nghiệm của phương trình theo m :
a) \(mx^2+\left(2m-1\right)x+m+2=0\)
b) \(2x^2-\left(4m+3\right)x+2m^2-1=0\)
Thảo luận (1)Hướng dẫn giải
Vì sao khi phương trình \(ax^2+bx+c=0\) có các hệ số a và c trái dấu thì nó có nghiệm ?
Áp dụng : Không tính \(\Delta\), hãy giải thích vì sao mỗi phương trình sau có nghiệm :
a) \(3x^2-x-8=0\)
b) \(2004x^2+2x-1185\sqrt{5}=0\)
c) \(3\sqrt{2}x^2+\left(\sqrt{3}-\sqrt{2}\right)x+\sqrt{2}-\sqrt{3}=0\)
d) \(2010x^2+5x-m^2=0\)
Thảo luận (2)Hướng dẫn giải
Giải các phương trình sau bằng hai cách (chuyển số hạng tự do sang vế phải; bằng công thức nghiệm) và so sánh kết quả tìm được :
a) \(4x^2-9=0\)
b) \(5x^2+20=0\)
c) \(2x^2-2+\sqrt{3}=0\)
d) \(3x^2-12+\sqrt{145}=0\)
Thảo luận (1)Hướng dẫn giảia: \(4x^2-9=0\)
=>(2x-3)(2x+3)=0
=>x=3/2 hoặc x=-3/2
b: \(5x^2+20=0\)
nên \(x^2+4=0\)(vô lý)
c: \(2x^2-2+\sqrt{3}=0\)
\(\Leftrightarrow2x^2=2-\sqrt{3}\)
\(\Leftrightarrow x^2=\dfrac{4-2\sqrt{3}}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{3}-1}{2};\dfrac{-\sqrt{3}+1}{2}\right\}\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)