Bài 3: Ứng dụng hình học của tích phân

Khám phá 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 25)

Hướng dẫn giải

a) Mặt cắt khi cắt khối nón \(N\) bởi mặt phẳng vuông góc với trục \(Ox\) là hình tròn. Ta nhận thấy rằng khi cắt khối nón \(N\) bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) thì bán kính mặt cắt sẽ là \(\frac{1}{2}x\).

Do đó diện tích của mặt cắt là \(S\left( x \right) = \pi .{\left( {\frac{1}{2}x} \right)^2} = \frac{\pi }{2}{x^2}\).

b) Khối nón \(N\) có bán kính đáy \(r = 2\) và chiều cao \(h = 4\) nên thể tích của khối nón là: \(V = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 26)

Hướng dẫn giải

Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_1^2 {{{\left( {1 + \frac{1}{x}} \right)}^2}dx}  = \pi \int\limits_1^2 {\left( {1 + \frac{2}{x} + \frac{1}{{{x^2}}}} \right)dx}  = \pi \left. {\left( {x + 2\ln \left| x \right| - \frac{1}{x}} \right)} \right|_1^2 = \pi \left( {\frac{3}{2} + 2\ln 2} \right)\)

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Chọn trục \(Ox\) và \(Oy\) như hình vẽ.

Khi quay hình phẳng \(D\) giới hạn bởi tam giác \(OAH\) quanh trục \(Ox\), ta sẽ được một khối nón có bán kính đáy \(r\) và chiều cao \(h\).

Hình phẳng \(D\) được giới hạn bởi đường thẳng \(OA\) có phương trình \(y = f\left( x \right) = ax + b\), trục hoành và hai đường thẳng \(x = 0\), \(x = h\).

Đường thẳng \(OA\) đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {h;r} \right)\) nên phương trình đường thẳng \(OA\) là \(y = \frac{r}{h}x\).

Thể tích khối nón là:

\(V = \pi \int\limits_0^h {{{\left( {\frac{r}{h}x} \right)}^2}dx}  = \pi \frac{{{r^2}}}{{{h^2}}}\int\limits_0^h {{x^2}dx}  = \frac{{\pi {r^2}}}{{{h^2}}}.\left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^h = \frac{{\pi {r^2}}}{{{h^2}}}.\frac{{{h^3}}}{3} = \frac{{\pi {r^2}h}}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục hoành và hai đường thẳng \(x =  - 1\), \(x = 1\) là

\(S = \int\limits_{ - 1}^1 {\left| {{e^x}} \right|dx}  = \int\limits_{ - 1}^1 {{e^x}dx}  = \left. {\left( {{e^x}} \right)} \right|_{ - 1}^1 = e - \frac{1}{e}\)

b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 2\) là

\(S = \int\limits_1^2 {\left| {x + \frac{1}{x}} \right|dx}  = \int\limits_1^2 {\left( {x + \frac{1}{x}} \right)dx}  = \left. {\left( {\frac{{{x^2}}}{2} + \ln \left| x \right|} \right)} \right|_1^2 = \frac{3}{2} + \ln 2\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {x^3} - x\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\) là: \(S = \int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx} \)

Ta có \({x^3} - x = 0 \Leftrightarrow x = 0\) hoặc \(x =  \pm 1\).

Do đó,

\(S = \int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx}  = \int\limits_{ - 1}^0 {\left| {{x^3} - x} \right|dx}  + \int\limits_0^1 {\left| {{x^3} - x} \right|dx}  = \left| {\int\limits_{ - 1}^0 {\left( {{x^3} - x} \right)dx} } \right| + \left| {\int\limits_0^1 {\left( {{x^3} - x} \right)dx} } \right|\)

\( = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| = \left| {\frac{1}{2}} \right| + \left| { - \frac{1}{2}} \right| = 1\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = \frac{{{x^2} + 1}}{x}\), \(y =  - x\) và hai đường thẳng \(x = 1\), \(x = 4\) là

\(S = \int\limits_1^4 {\left| {\frac{{{x^2} + 1}}{x} - \left( { - x} \right)} \right|dx}  = \int\limits_1^4 {\left| {\frac{{2{x^2} + 1}}{x}} \right|dx}  = \int\limits_1^4 {\left( {\frac{{2{x^2} + 1}}{x}} \right)dx}  = \int\limits_1^4 {\left( {2x + \frac{1}{x}} \right)dx} \)

\( = \left. {\left( {{x^2} + \ln \left| x \right|} \right)} \right|_1^4 = 15 + \ln 4\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} + 1\), \(y = 2\) và hai đường thẳng \(x =  - 1\), \(x = 2\) là \(S = \int\limits_{ - 1}^2 {\left| {\left( {{x^3} + 1} \right) - 2} \right|dx}  = \int\limits_{ - 1}^2 {\left| {{x^3} - 1} \right|dx} \)

Ta có \({x^3} - 1 = 0 \Leftrightarrow x = 1\). Do đó:

\(S = \int\limits_{ - 1}^1 {\left| {{x^3} - 1} \right|dx}  + \int\limits_1^2 {\left| {{x^3} - 1} \right|dx}  = \left| {\int\limits_{ - 1}^1 {\left( {{x^3} - 1} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - 1} \right)dx} } \right|\)

\( = \left| {\left. {\left( {\frac{{{x^4}}}{4} - x} \right)} \right|_{ - 1}^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - x} \right)} \right|_1^2} \right| = \left| { - 2} \right| + \left| {\frac{{11}}{4}} \right| = \frac{{19}}{4}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Vì mặt cắt là một tam giác vuông có một góc \({45^o}\), nên mặt cắt là tam giác vuông cân. Do đó diện tích mặt cắt là \(S\left( x \right) = \frac{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}}{2} = \frac{{4 - {x^2}}}{2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\frac{{4 - {x^2}}}{2}dx}  = \frac{1}{2}\int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx}  = \frac{1}{2}\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^2 = \frac{{16}}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Ta nhận thấy rằng hình phẳng \(D\) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4 - x} \), trục hoành và hai đường thẳng \(x = 0\) (trục tung), \(x = 4\).

Thể tích khối tròn xoay khi quay \(D\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^4 {{{\left( {\sqrt {4 - x} } \right)}^2}dx}  = \pi \int\limits_0^4 {\left( {4 - x} \right)dx}  = \pi \left. {\left( {4x - \frac{{{x^2}}}{2}} \right)} \right|_0^4 = 8\pi \)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 7 (SGK Chân trời sáng tạo - Tập 2 - Trang 27)

Hướng dẫn giải

Hình thang \(OABC\) được giới hạn bởi các đường thẳng \(AB\), \(OC\) (trục hoành), \(OA\) (trục tung, \(x = 0\)) và \(BC\) \(\left( {x = 2} \right)\).

Phương trình đường thẳng \(AB\) là \(y = f\left( x \right) = ax + b\). Do \(A\left( {0;1} \right)\), \(B\left( {2;2} \right)\) nên ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{a.0 + b = 1}\\{a.2 + b = 2}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = 1\end{array} \right.\)

Vậy phương trình đường thẳng \(AB\) là \(y = \frac{1}{2}x + 1\)

Thể tích khối tròn xoay khi quay hình thang \(OABC\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^2 {{{\left( {\frac{1}{2}x + 1} \right)}^2}dx}  = \pi \int\limits_0^2 {\left( {\frac{1}{4}{x^2} + x + 1} \right)dx}  = \pi \left. {\left( {\frac{{{x^3}}}{{12}} + \frac{{{x^2}}}{2} + x} \right)} \right|_0^2 = \frac{{14}}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)