Bài 1: Nguyên hàm

Mở đầu (SGK Chân trời sáng tạo - Tập 2 - Trang 6)

Khám phá 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 6)

Hướng dẫn giải

Ta có \(\left( {{x^2}} \right)' = 2x\), nên \(F\left( x \right) = {x^2}\) là một hàm số cần tìm.

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 6)

Hướng dẫn giải

a) Ta có \(F'\left( x \right) = 3{x^2} = f\left( x \right)\), nên \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).

b) Ta có \(H'\left( x \right) = \left[ {F\left( x \right) + C} \right]' = F'\left( x \right) + C' = f\left( x \right)\) (do \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)), nên \(H\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).

c) Do \(G\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\), ta có \(G'\left( x \right) = f\left( x \right)\).

Ta có \(\left[ {G\left( x \right) - F\left( x \right)} \right]' = G'\left( x \right) - F'\left( x \right) = f\left( x \right) - f\left( x \right) = 0\).

Vậy đạo hàm của hàm số \(G\left( x \right) - F\left( x \right)\) bằng 0, tức là \(G\left( x \right) - F\left( x \right)\) là một hằng số (do đạo hàm của một hằng số thì bằng 0).

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 7)

Hướng dẫn giải

Ta có \(F'\left( x \right) = \left( {{e^{2x + 1}}} \right)' = 2{e^{2x + 1}} = f\left( x \right)\), nên \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 7)

Hướng dẫn giải

a) Do \(C' = 0\) nên hàm số \(F\left( x \right) = C\) là một nguyên hàm của hàm số \(f\left( x \right) = 0\). Như vậy \(\int {0dx = C} \).

Do \(x' = 1\) nên hàm số \(F\left( x \right) = x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1\). Như vậy \(\int {1dx = x + C} \).

b) Ta có \(F'\left( x \right) = \left( {\frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}}} \right)' = \frac{{\left( {\alpha  + 1} \right){x^\alpha }}}{{\alpha  + 1}} = {x^\alpha }\). Vậy ta có \(F\left( x \right) = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}}\) \(\left( {\alpha  \ne  - 1} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^\alpha }\). Do đó \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 8)

Hướng dẫn giải

a) \(\int {{x^4}dx}  = \frac{{{x^{4 + 1}}}}{{4 + 1}} + C = \frac{{{x^5}}}{5} + C\).

b) \(\int {\frac{1}{{{x^3}}}dx}  = \int {{x^{ - 3}}dx = \frac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}} + C = \frac{{{x^{ - 2}}}}{{ - 2}} + C =  - \frac{1}{{2{x^2}}} + C} \).

c) \(\int {\sqrt x dx}  = \int {{x^{\frac{1}{2}}}dx}  = \frac{{{x^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} + C = \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + C = \frac{2}{3}\sqrt {{x^3}}  + C\).

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 9)

Hướng dẫn giải

a) Ta có:

\(\left( {\sin x} \right)' = \cos x\)

\(\left( { - \cos x} \right)' =  - \left( { - \sin x} \right) = \sin x\)

\(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)

\(\left( { - \cot x} \right)' =  - \frac{{ - 1}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\)

b) Từ câu a, ta có:

\(\int {\cos xdx}  = \sin x + C\)

\(\int {\sin xdx}  =  - \cos x + C\)

\(\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C} \)

\(\int {\frac{1}{{{{\sin }^2}x}} =  - \cot x + C} \)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 9)

Hướng dẫn giải

Ta có: \(F\left( x \right) = \int {f\left( x \right)dx}  = \int {\cos xdx}  = \sin x + C\)

Suy ra \(F\left( 0 \right) = \sin 0 + C = C\) và \(F\left( {\frac{\pi }{2}} \right) = \sin \frac{\pi }{2} + C = 1 + C\)

Do \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) nên \(C + \left( {1 + C} \right) = 0 \Rightarrow C =  - \frac{1}{2}\).

Vậy \(F\left( x \right) = \sin x - \frac{1}{2}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 9)

Hướng dẫn giải

a) Ta có \(\left( {{e^x}} \right)' = {e^x}\) và \(\left( {\frac{{{a^x}}}{{\ln a}}} \right)' = \frac{{{a^x}\ln a}}{{\ln a}} = {a^x}\).

b)  Từ câu a, ta có:

\(\int {{e^x}dx}  = {e^x} + C\)

\(\int {{a^x}dx}  = \frac{{{a^x}}}{{\ln a}} + C\)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 9)

Hướng dẫn giải

a) \(\int {{3^x}dx}  = \frac{{{3^x}}}{{\ln 3}} + C\)

b) \(\int {{e^{2x}}dx}  = \int {{{\left( {{e^2}} \right)}^x}dx}  = \frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln \left( {{e^2}} \right)}} + C = \frac{{{e^{2x}}}}{2} + C\).

(Trả lời bởi datcoder)
Thảo luận (1)