Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Tìm nguyên hàm F(x) của hàm số f(x) = cosx thỏa mãn \(F\left(0\right)+F\left(\dfrac{\pi}{2}\right)=0\)

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 22:53

Ta có: \(F\left( x \right) = \int {f\left( x \right)dx}  = \int {\cos xdx}  = \sin x + C\)

Suy ra \(F\left( 0 \right) = \sin 0 + C = C\) và \(F\left( {\frac{\pi }{2}} \right) = \sin \frac{\pi }{2} + C = 1 + C\)

Do \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) nên \(C + \left( {1 + C} \right) = 0 \Rightarrow C =  - \frac{1}{2}\).

Vậy \(F\left( x \right) = \sin x - \frac{1}{2}\).