Bài 3: Ứng dụng hình học của tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−2 ≤ x ≤ 2), mặt cắt là tam giác vuông có một góc 45° và độ dài một cạnh góc vuông là \(\sqrt{4-x^2}\) (dm) (Hình 17). Tính thể tích của vật thể.

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 23:07

Vì mặt cắt là một tam giác vuông có một góc \({45^o}\), nên mặt cắt là tam giác vuông cân. Do đó diện tích mặt cắt là \(S\left( x \right) = \frac{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}}{2} = \frac{{4 - {x^2}}}{2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\frac{{4 - {x^2}}}{2}dx}  = \frac{1}{2}\int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx}  = \frac{1}{2}\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^2 = \frac{{16}}{3}\)