Bài 2. Các quy tắc tính đạo hàm

Bài 3 trang 71 (SGK Cánh Diều)

Hướng dẫn giải

a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)

b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)

c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)

\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)

d: \(y'=\left(3sinx+4cosx-tanx\right)\)'

\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)

e: \(y'=\left(4^x+2e^x\right)'\)

\(=4^x\cdot ln4+2\cdot e^x\)

f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 4 trang 71 (SGK Cánh Diều)

Hướng dẫn giải

a)     Hàm số f(x) là hàm hợp của hàm số \(y = {a^x}\)

b)    \(f'(x) = \left( {{2^{3x + 2}}} \right)' = \left( {3x + 2} \right)'{.2^{3x + 2}}.\ln 2 = {3.2^{3x + 2}}.\ln 2\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 5 trang 71 (SGK Cánh Diều)

Hướng dẫn giải

a: \(y'=\left(sin3x\right)'+\left(sin^2x\right)'=3\cdot cos3x+sin\left(x+pi\right)\)

b: \(y'=\left(log_2\left(2x+1\right)\right)'+\left(3^{-2x+1}\right)'\)

\(=\dfrac{2}{\left(2n+1\right)\cdot ln2}-2\cdot3^{-2x+1}\cdot ln3\)

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 6 trang 72 (SGK Cánh Diều)

Hướng dẫn giải

a)     \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b)    \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c)     \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7 trang 72 (SGK Cánh Diều)

Hướng dẫn giải

Cho Ox theo phương thẳng đứng, chiều hướng từ mặt đất lên trời, gốc O là vị trí viên đạn được bắn lên, khi đó phương trình chuyển động của viên đạn là: \(y = {v_0}t - \frac{1}{2}g{t^2}\,\,\left( {g = 9,8m/{s^2}} \right)\)

Ta có vận tốc tại thời điểm t là: \(v = y'\left( t \right) = {v_0} - gt\)

Do đó: \(v = 0 \Rightarrow {v_0} - gt = 0 \Leftrightarrow t = \frac{{{v_0}}}{g} = \frac{{196}}{{9.8}} = 20\,\,(s)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 8 trang 72 (SGK Cánh Diều)

Hướng dẫn giải

Công thức tổng quát của cường độ dòng điện tại thời gian t là:

\(I\left(t\right)=q'\left(t\right)=Q_0\cdot\omega\cdot cos\left(\omega t\right)\)

=>\(I\left(6\right)=10^{-8}\cdot10^6\cdot\pi\cdot cos\left(10^6\cdot pi\cdot6\right)=0.01\pi\left(A\right)\)

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)