Bài 15. Phương trình đường thẳng trong không gian

Hoạt động 6 (SGK Kết nối tri thức với cuộc sống - Trang 46)

Hướng dẫn giải

a) Để \({\Delta _1}\) và \({\Delta _2}\) song song hoặc trùng nhau thì giá của hai vectơ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) song song hoặc trùng nhau. Suy ra, \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương.

b) Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \) mà \(\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\) nên \(\overrightarrow {{A_1}{A_2}}  = \overrightarrow 0 \), suy ra \({A_1}\) trùng \({A_2}\). Do đó, \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.

c) Vì \(\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne 0\) nên \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \) và \(\overrightarrow {{A_1}{A_2}}  \ne \overrightarrow 0 \) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

(Trả lời bởi datcoder)
Thảo luận (2)

Luyện tập 7 (SGK Kết nối tri thức với cuộc sống - Trang 45)

Hướng dẫn giải

Đường thẳng \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u \left( {2;1; - 1} \right)\). Trục Oz có một vectơ chỉ phương là \(\overrightarrow k  = \left( {0;0;1} \right)\).

Vì \(2.0 + 1.0 - 1.1 =  - 1 \ne 0\) nên đường thẳng \(\Delta \) không vuông góc với trục Oz.

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 4 (SGK Kết nối tri thức với cuộc sống - Trang 44)

Hướng dẫn giải

Đường thẳng \(\Delta \) có phương trình tham số là: \(\left\{ \begin{array}{l}x = 2 - t\\y =  - 1 + 2t\\z = 3t\end{array} \right.\) và phương trình chính tắc là:

\(\frac{{x - 2}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{z}{3}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 9 (SGK Kết nối tri thức với cuộc sống - Trang 47)

Hướng dẫn giải

Đường thẳng \({\Delta _1}\) đi qua điểm \({A_1}\left( {1; - 2;3} \right)\) và có một vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1;1;4} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({A_2}\left( { - 1; - 1;0} \right)\) và có một vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {1;1;4} \right)\).

a) Vì \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}} \) nên \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \).

Lại có: \(\frac{{1 + 1}}{1} \ne \frac{{ - 2 + 1}}{1}\) nên điểm \({A_1}\left( {1; - 2;3} \right)\) không thuộc đường thẳng \({\Delta _2}\).

Do đó, hai đường thẳng \({\Delta _1},{\Delta _2}\) song song với nhau.

b) Trục Ox có một vectơ chỉ phương \(\overrightarrow i  = \left( {1;0;0} \right)\) và đi qua điểm O(0;0;0).

Ta có: \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow i } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&4\\0&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}4&1\\0&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&1\\1&0\end{array}} \right|} \right) = \left( {0;4; - 1} \right)\), \(\overrightarrow {{A_1}O} \left( { - 1;2; - 3} \right)\)

Vì \(\overrightarrow {{A_1}O} .\left[ {\overrightarrow {{u_1}} ;\overrightarrow i } \right] =  - 1.0 + 2.4 - 3.\left( { - 1} \right) = 11 \ne 0\) nên \({\Delta _1}\) và Ox chéo nhau.

c) Đường thẳng \({\Delta _3}\) có một vectơ chỉ phương \(\overrightarrow {{u_3}}  = \left( {1;1;4} \right)\).

Vì \(\overrightarrow {{u_3}}  = \overrightarrow {{u_2}} \) nên \(\overrightarrow {{u_3}} \) cùng phương với \(\overrightarrow {{u_2}} \).

Lại có: \(\frac{{ - 1 + 2}}{1} = \frac{{ - 1 + 2}}{1} = \frac{{0 + 4}}{4}\) nên điểm \({A_2}\left( { - 1; - 1;0} \right)\) thuộc đường thẳng \({\Delta _3}\).

Do đó, đường thẳng \({\Delta _2}\) trùng với đường thẳng \({\Delta _3}\).

d) Trục Oz có một vectơ chỉ phương \(\overrightarrow k  = \left( {0;0;1} \right)\) và đi qua điểm O(0;0;0)

Ta có: \(\left[ {\overrightarrow {{u_2}} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&4\\0&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}4&1\\1&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&1\\0&0\end{array}} \right|} \right) = \left( {1; - 1;0} \right)\), \(\overrightarrow {{A_2}O} \left( {1;1;0} \right)\)

Vì \(\overrightarrow {{A_2}O} .\left[ {\overrightarrow {{u_2}} ,\overrightarrow k } \right] = 1.1 - 1.1 - 0.0 = 0\) và \(\left[ {\overrightarrow {{u_2}} ,\overrightarrow k } \right] = \left( {1; - 1;0} \right) \ne \overrightarrow 0 \) nên \({\Delta _2}\) cắt trục Oz.

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống - Trang 42)

Hướng dẫn giải

a) Vật chuyển động trên đường thẳng qua A và song song với giá của vectơ \(\overrightarrow u \) (đi qua điểm A và vectơ chỉ phương của đường thẳng là \(\overrightarrow u \)).

b) Tại thời điểm t, vật ở vị trí \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) nên: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống - Trang 44)

Hướng dẫn giải

a) Một vectơ chỉ phương của đường thẳng \({A_1}{A_2}\) là \(\overrightarrow {{A_1}{A_2}} \).

b) Đường thẳng \({A_1}{A_2}\) có vectơ chỉ phương là \(\overrightarrow {{A_1}{A_2}} \left( {{x_2} - {x_1};{y_2} - {y_1};{z_2} - {z_1}} \right)\).

Mà đường thẳng \({A_1}{A_2}\) đi qua điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right)\) nên phương trình đường thẳng tham số \({A_1}{A_2}\) là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\\z = {z_1} + \left( {{z_2} - {z_1}} \right)t\end{array} \right.\)

Phương trình chính tắc của đường thẳng \({A_1}{A_2}\) là: \(\frac{{x - {x_1}}}{{{x_2} - {x_1}}} = \frac{{y - {y_1}}}{{{y_2} - {y_1}}} = \frac{{z - {z_1}}}{{{z_2} - {z_1}}}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Mở đầu (SGK Kết nối tri thức với cuộc sống - Trang 41)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống - Trang 42)

Hướng dẫn giải

Đường thẳng AB nhận các vectơ \(\overrightarrow {AB} ,\overrightarrow {A'B'},\overrightarrow {B'A'} ,\overrightarrow {BA} \) là các vectơ chỉ phương.

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống - Trang 43)

Hướng dẫn giải

Vì \(\Delta \) có phương trình \(\frac{{x - \left( { - 1} \right)}}{3} = \frac{{y - 1}}{1} = \frac{{z - 2}}{5}\) nên điểm \(M\left( { - 1;1;2} \right)\) và điểm N(2; 2; 7) thuộc \(\Delta \) và \(\overrightarrow u \left( {3;1;5} \right)\) là một vectơ chỉ phương của \(\Delta \).

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 2 (SGK Kết nối tri thức với cuộc sống - Trang 45)

Hướng dẫn giải

Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} \left( {1;1;0} \right)\)

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} \left( { - 2;2;0} \right)\)

Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 1.\left( { - 2} \right) + 1.2 + 0.0 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.

Do đó, hai con đường trên vuông góc với nhau.

(Trả lời bởi datcoder)
Thảo luận (1)